Abstract:
A new hybrid method of fabricating optical micro electro mechanical system (MEMS) devices is disclosed that uses both bulk and surface micromachining techniques, and a new optical MEMS device is also disclosed that is fabricated using the new method. The method includes the step of mounting a handle layer to one or more layers of MEMS structural material (12). Layers of structural and sacrificial material are then built up on the MEMS structural material using surface micromachining techniques (14). Drive electronics are mounted to the layers of structural and sacrificial material (17). The handle layer is removed (18) to reveal the MEMS structural layer and the sacrificial material within the various layers is dissolved (20). The new method is particularly applicable to fabricating optical MEMS devices, with the handle layer (54) being adjacent to a Si mirror layer (52). The surface micromachining layers form electrode (66) and spring structures (67, 68). Drive electronics (92) are then mounted on the layers of structural material, so that a bias can be applied to the MEMS structures. The handle layer (54) is removed from the mirror layer (52) to reveal the mirror's reflective surface, and the sacrificial material (64) is dissolved away, freeing the MEMS structures to operate. For optical or other MEMS arrays, a linking framework (70) can be included to attach the MEMS devices.
Abstract:
A method for producing a unitary flexible microelement from a supporting wafer is provided. The unitary flexible microelement defines a supporting body having a solid region and a flexible region consisting of a thin part of the supporting wafer. The method comprises the following steps: defining thickness of the flexible region and growing an upper insulating layer to the upper surface covering the predefined area and growing a lower insulating layer to the lower surface covering the solid region. The method comprises defining a conductive layer on the predefined area of the upper surface, depositing a final insulating layer on the upper surface covering the conductive layer and depositing a metallic protective layer on the upper surface covering the insulating layer. Furthermore, the method comprises etching the lower surface until the etching reaches the thickness of the flexible region, and deepositing a conductive layer on the lower surface to establish a coaxial conductor.
Abstract:
A method of forming a membrane with nanometer scale pores includes forming a sacrificial etch stop layer on a substrate. A base layer is constructed on the sacrificial etch stop layer. Micrometer scale pores are formed within the base layer. A sacrificial base layer is built on the base layer. The sacrificial base layer is removed from selected regions of the base layer to define nanometer scale pores within the base layer. The resultant membrane has sub-fifty nanometer pores formed within it.
Abstract:
The invention relates to a method for producing a micromechanical component (100) that comprises at least one cavity (110) and one functional element (12) at least partially disposed in said cavity (110) and/or one functional layer (13a, 13b, 13c) at least partially disposed therein. The invention further relates to a micromechanical component (100) produced according to the inventive method. The aim of the invention is to reduce the production costs for such a micromechanical component. To this end, the functional element (12) and/or the functional layer (13a, 13b, 13c) is provided with a first protective layer (41; 71) at least in a zone that adjoins a first sacrificial coating (52) that temporarily occupies the space of the cavity (22) subsequently formed in one or more etching steps. The material of the first protective layer (41) is selected in such a manner that at least one etching method and/or etching agent etching or dissolving the first sacrificial coating (52) does substantially not corrode the first protective layer (41; 71) or corrodes it only at a reduced etching rate in relation to the first sacrificial coating (52).
Abstract:
Disclosed is a method for the production of a micromechanical component, comprising the production of a micromechanical component with sensor holes, wherein at least one component protective layer and/or spacer coating is applied on the component before separating the wafer into chips, wherein the component protective layer sealingly covers at least the walls of the holes extending parallel to the surface of the wafer and perpendicular to the surface of the wafer and the spacer coating sealingly covers at least the walls of the holes extending parallel to the surface of the wafer. The invention also relates to a micromechanical component produced according to the method disclosed in the invention and to the use of said components in microphones, pressure sensors or acceleration sensors.
Abstract:
The invention concerns the production of machined silicon micro-sensors, in particular accelerometers for assistance to navigation in aircraft, and pressure sensors. In order to improve the production of certain active parts of the sensor, and particularly of a beam (32) forming a resonator, whereof the width and thickness characteristics should be well controlled, the method consists in: producing, by micro-machining the silicon on a first plate (30), a beam with thickness equal to the required final thickness, said beam being coated on its top surface with a mask defining the required final width; assembling the plate (30) with another (10); oxidising the two surfaces of the beam to coat them with a thin protective layer; removing, by vertical directional etching, said thin protective layer on the top surface without removing the mask already there; working on the silicon in the zone exposed by the previous operation, using vertical directional etching on the top surface, until all the part of the beam not protected by the mask is eliminated thereby producing the beam with the required width.
Abstract:
The microbridge structure comprises a substrate layer provided with two first electrical contacts, a microstructure provided with two second electrical contacts, and a micro support for suspending the microstructure over and at a predetermined distance from the substrate layer. The micro support extends along a vertical axis. The micro support has a central upper cavity extending along the vertical axis within the micro support. The micro support has a lower end connected to the substrate layer and an upper end connected to the microstructure for supporting the microstructure with respect to the substrate layer. The micro support is a multilayer micro support comprising two conductive paths and a layer made of dielectric material. The conductive paths and the layer of the micro support extend from the upper end to the lower end thereof. The two conductive paths connect respectively the two first contacts to the two second contacts. The present invention is also concerned with a method for forming a microstructure suspended by a micro support.
Abstract:
PURPOSE: A micro electronic mechanical system(MEMS) device manufacturing method is provided to protect the rest part of a metal layer by using a protective layer while forming a movable portion for a MEMS device by etching a sacrificial layer. CONSTITUTION: A micro electronic mechanical system device manufacturing method is as follows. A sacrificial layer(34) is formed on a substrate(12). A metal layer(42) is formed on the sacrificial layer. A protective layer(44) is formed on the metal layer. A structure having the rest part of the protective layer formed on the rest part of the metal layer is formed by etching the protective and metal layers. The sacrificial layer is etched. A movable portion of a MEMS is formed.