Abstract:
A conductive adhesive containing conductive particles and resin, and a circuit bonded with this adhesive. This conductive adhesive is characterized in that 30wt% or more of the conductive particles consists substantially of silver and tin, and in that the molar ratio between silver and tin that are the metal components of the conductive adhesive is in the range of 77. 5:22.5 to 0:100.
Abstract:
To provide a conductive resin composition with which high conduction reliability can be ensured, a method for manufacturing, using the composition, an electronic component having high bonding reliability, a bonding method and a bonding structure by which objects to be bonded can be bonded to each other with certainty, and a highly reliable electronic component having the bonding structure. A conductive resin composition which includes (a) a curable resin and (b) hard spherical carbon formed by coating the surface of a spherical base carbon particle with fine carbon particles and/or hard spherical carbon formed by coating the surface of a spherical base carbon particle with pitch-derived fine carbon pieces, is used. The conductive resin composition is suppled to a space between areas of at least two works respectively having the areas to be electrically connected to each other, and the conductive resin composition is cured while applying a pressure between the areas.
Abstract:
A composition including a plurality of multi-metallic nanoparticles each consisting essentially of a core comprising at least one first metal (Me1) and a continuous shell comprising atoms of at least one second metal (Me2). Optionally, the continuous shell of Me2 atoms protects the Me1 atoms from oxidation at all temperatures less than 150°C.
Abstract:
Embodiments described herein provide for a composition of voltage switchable dielectric (VSD) material that includes a concentration of modified high-aspect ratio (HAR) particles. In an embodiment, at least a portion of the concentration includes HAR particles are surface-modified to provide core-shell HAR particles. As an alternative or addition, a portion of the concentration includes HAR particles that are surface-modified to have activated surfaces.
Abstract:
Embodiments described herein provide for a composition of voltage switchable dielectric (VSD) material that includes a concentration of modified high-aspect ratio (HAR) particles. In an embodiment, at least a portion of the concentration includes HAR particles are surface-modified to provide core-shell HAR particles. As an alternative or addition, a portion of the concentration includes HAR particles that are surface-modified to have activated surfaces.
Abstract:
In solder paste of the present invention, a first metal powder, a second metal powder, and a third metal powder are dispersed in a flux or a thermosetting resin. The first metal powder includes a first metal material such as Cu, Ag, Au, or Pd that serves as a base metal. In the first metal powder, a second metal material such as Sn or In that has a melting point lower than that of the first metal material is coated on the surface of the first metal material. The second metal powder is made of a metal material such as Sn or In that has a melting point lower than that of the first metal material. The third metal powder such as a Cu, Ag, Au, or Pd powder has an average particle diameter smaller than that of the first metal material and can form compounds with the second metal material and the second metal powder. Accordingly, the likelihood of unreacted components remaining after a heat treatment can be suppressed. Accordingly, even when a reflow treatment is repeated a plurality of times, a decrease in the bonding strength of solder bonding can be prevented.
Abstract:
The present invention provides a radiation curable conductive ink and a manufacturing method for conductive substrate using the conductive ink, wherein components of the radiation curable conductive ink contain at least conductive powder having a covering layer and a photosensitive binder. The radiation curable conductive ink is printed on surface of a substrate using a screen printing method, and a chemical crosslinking reaction is achieved by irradiating the conductive ink with ultraviolet ray, visible light or electron beam, thereby forming a conductive substrate. The conductive substrate is particularly applicable for use in laminate type electronic devices, including radio frequency identification (RFID) antenna, printed-circuit boards, smart cards (non-contact chip cards) components, smart labels, printed electronics, anti-electromagnetic interference (EMI) and anti-electrostatic materials.
Abstract:
It is the object of the present invention to provide a conductive particle which has excellent adhesion between a base particle and a conductive layer, a conductive layer being resistant to breaking, impact resistance being improved, and an anisotropic conductive material using the conductive particle. The prevent invention is a conductive particle, which comprises a base particle and a conductive layer formed on a surface of said base particle, said conductive layer having a non-crystal nickel plating layer in contact with the surface of said base particle and a crystal nickel plating layer, and a proportion of a nickel crystal grain aggregate oriented in a nickel (111) plane derived from an integrated intensity ratio in X-ray diffraction measurement being 80% or more.
Abstract:
The present invention provides a variety of interrelated methods of coating non-random and ordered arrays of particles, as well as films containing such arrays. The present invention also relates to the coated non-random and ordered arrays of particles and films prepared therefrom. The coated non-random and ordered arrays are obtained by the use of ferrofluid compositions which may be curable. The arrays and films may contain electrically-conductive particles useful in electronic applications for effecting contact between conductors.