Abstract:
A matrix field-emission cathode (5) comprises a monocrystalline silicon substrate (7) on which are arranged epitaxially grown pointed silicon emitters (1) which also act as a ballast resistor connected in series. In an advantageous embodiment of the proposed cathode, for a radius of curvature (r) at the emitter tip not exceeding 10 nm, the ratio of the height (h) of the emitter to the radius (r) is not less than 1000, while the ratio of (h) to the diameter (D) at the emitter base is not less than 1. The angle α at the emitter tip does not exceed 30°. The specific resistance of the emitter material is chosen so as to ensure that the resistance of each emitter will be comparable with the resistance between the cathode and the opposing electrode. The proposed cathode is used in an electronic device for displaying information which also has an anode (3) in the form of a strip (11) of phosphorescent material (10) and a conducting layer (9) whose projection onto the cathode (5) is perpendicular to the conducting paths (6) on the cathode; the anode itself acts as the control electrode.
Abstract:
A matrix addressed diode flat panel display (820) including a diode pixel structure. The flat panel display includes a cathode assembly having a plurality of cathodes (210-280), each cathode including a plurality of cathode conductive material (440) and a layer of low effective work-function material (460) deposited over the cathode conductive material and an anode assembly having a plurality of anodes (290-292), each anode including a layer of anode conductive material (410) and a cathodoluminescent material (430) deposited over the anode conductive material, the anode assembly located proximate the cathode assembly to thereby receive the charged particle emissions from the cathode assembly. The display further includes means (100) for selectively varying field emissions between the plurality of corresponding light-emitting anodes and field-emission cathodes.
Abstract:
The present invention provides a field emission device and a process for producing the same. The device comprises a cathode (2) projecting from the surface of a substrate (1), an insulating layer (3) provided on the surface of the substrate, which insulating layer is open at the location of the cathode, and a gate electrode (4) provided on the surface of the insulating layer, which gate electrode is open at the location of the cathode. In the production of the device, the cathode and the insulating layer are fabricated by forming both from a layer of a material by supplying insulating impurities into a portion only of the layer of material for forming the insulating layer whilst leaving another portion of the layer of material as the cathode. Consequently, the cathode and the insulating layer are formed from the same basic material and the same basic layer, which is advantageous from a manufacturing point of view.
Abstract:
An electron emission device includes a polycrystalline film of lanthanum boride, and a size of a crystallite which composes the polycrystalline film is equal to or more than 2.5 nm and equal to or less than 100 nm, preferably the film thickness of the polycrystalline film is equal to or less than 100 nm.
Abstract:
An electron emission device includes a polycrystalline film of lanthanum boride, and a size of a crystallite which composes the polycrystalline film is equal to or more than 2.5 nm and equal to or less than 100 nm, preferably the film thickness of the polycrystalline film is equal to or less than 100 nm.
Abstract:
A method of forming a field emission device and the resulting device including emitters formed of fiber segments. Tips are formed on the fiber segments that have a radius substantially small by exposing the tips to a reactive liquid for a duration of time. The tips are coated with a low work function conducting material to form emitters.
Abstract:
A field emission device (1) may be used for emitting electrons in, for example, a field emission display (FED). Field emission tips (40) are used for the emitting of electrons in the field emission device (1). In operation of the field emission device (1) a voltage is applied between a first electrode (4) having electrical contact with the field emission tip (40) and a second electrode (34) to make the field emission tip (40) emit electrons. To form a field emission tip (40) a layer of liquid material is applied on a substrate (2) provided with the first electrode (4). The layer of liquid material is embossed with a patterned stamp and subsequently cured to form a field emission tip structure (20). A conductive film (38) is applied on the field emission tip structure (20) to form a field emission tip (40) that has electrical contact with the first electrode (4).
Abstract:
An electron emitter (121, 221, 321, 421) includes an electron emitter structure (118) having a passivation layer (120, 220, 320, 420) formed thereon. The passivation layer (120, 220, 320, 420) is made from an oxide selected from a group consisting of the oxides of Ba, Ca, Sr, In, Sc, Ti, Ir, Co, Sr, Y, Zr, Ru, Pd, Sn, Lu, Hf, Re, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Th, and combinations thereof. In the preferred embodiment, the electron emitter structure (118) is made from molybdenum, and the passivation layer (120, 220, 320, 420) is made from an emission-enhancing oxide having a work function that is less than the work function of the molybdenum.
Abstract:
A withdrawn electrode is formed on a silicon substrate with intervention of upper and lower silicon oxide films each having circular openings corresponding to regions in which cathodes are to be formed. Tower-shaped cathodes are formed in the respective openings of the upper and lower silicon oxide films and of the withdrawn electrode. Each of the cathodes has a sharply tapered tip portion having a radius of 2nm or less, which has been formed by crystal anisotropic etching and thermal oxidation process for silicon. The region of the silicon substrate exposed in the openings of the upper and lower silicon oxide films and the cathode have their surfaces coated with a thin surface coating film made of a material having a low work function and composed of an ultra-fine particute.