Abstract:
A single-photon absorption all-optical modulator, systems employing the same, and methods of making and using the same. An illustrative example is provided based on silicon semiconductor technology that employs rectangular waveguides. In some embodiments, it is observed that the waveguides operate with an absorption density of less than 1017 cm−1s−1mW−1 to provide a single-photon absorption operation mode.
Abstract:
Techniques for integrating optoelectronic system and microfluidic system. An apparatus for optical analysis includes a detector system and a microfluidic system on the detector system. The apparatus is free from any lens system between the microfluidic system and the detector system. Methods of making such an apparatus and using such an apparatus are also disclosed.
Abstract:
A system and method are disclosed for a rapidly tunable wavelength selective ring resonator. An embodiment of a voltage-tunable wavelength selective ring resonator includes a ring-shaped waveguide formed on a semiconductor substrate, an electro-optic cladding layer formed over the ring-shaped waveguide, and voltage applying means for applying a voltage across the electro-optic cladding layer. The ring-shaped waveguide is configured to propagate optical signals having predetermined resonant wavelengths, the electro-optic cladding layer has a voltage-controlled variable refractive index, and the means for applying is configured to apply a wavelength-specific control voltage to the electro-optic cladding layer. The wavelength-specific control voltage will shift or tune the predetermined resonant wavelengths for the ring-shaped waveguide.
Abstract:
Optical switches and logic devices comprising microstructure-doped nanocavity lasers are described. These switches and logic devices have gain and thus can be cascaded and integrated in a network or system such as for example on a chip. Exemplary switching elements switch the intensity, wavelength, or direction of the output. Exemplary logic devices include AND, OR, NAND, NOR, NOT, and XOR gates as well as flip-flops. Microfluidic sorting and delivery as well as optical tweezing and trapping may be employed to select and position a light emitter in a nanooptical cavity to form the nanolaser.
Abstract:
The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
An apparatus and method for increasing efficiency of grating couplers are disclosed. The apparatus through the use of a defect or a reflective element allows coupling of light around a normal or nearly normal angle with a high efficiency. The method disclosed teaches how to increase the efficiency of a grating coupler through the use of a defect or a mirror. The apparatus and method can be of particular utility in the context of optical clocking implemented with a III-V chip flip-chip bonded on a CMOS chip.
Abstract:
The invention provides a nitride semiconductor light-emitting device comprising gallium nitride semiconductor layers formed on a heterogeneous substrate, wherein light emissions having different light emission wavelengths or different colors are given out of the same active layer. Recesses 106 are formed by etching in the first electrically conductive (n) type semiconductor layer 102 formed on a substrate with a buffer layer interposed between them. Each recess is exposed in plane orientations different from that of the major C plane. For instance, the plane orientation of the A plane is exposed. An active layer is grown and joined on the plane of this plane orientation, on the bottom of the recess and the C-plane upper surface of a non-recess portion. The second electrically conductive (p) type semiconductor layer is formed on the inner surface of the recess. With the active layer formed contiguously to the semiconductor layer in two or more plane orientations, a growth rate difference gives rise to a difference in the thickness across the quantum well (active layer), giving out light emissions having different light emission wavelength peaks or different colors.
Abstract:
Methods and devices of performing reactions for which presence of light is desirable are provided. Biological or chemical materials such as algae are put in a chamber shaped as a meandering fluid channel. The algae can be combined with biomass such as human or animal waste and then subject to light, such as natural light or light coming from a LED, to produce fuel. Production of fuel can be optimized by controlling the height-to-width ratio of the channels
Abstract:
Microfluidic assay detectors and microfluidic assay detection methods are disclosed. A microfluidic chip is coupled to a light emitting device, emission filters and excitation filters. Excited fluorescent light is detected by a camera and a lens. The correspondent reading allows parallel detection of features such as antigens and biomarkers. A microfluidic filter and related methods are also disclosed. The filter can be used with on-chip fluid filtration such as whole blood filtration for microfluidic blood analysis. The filter is able to filter the necessary volume of fluid and in particular blood in an acceptable time frame.