Abstract:
A scroll compressor can include a housing, a rod member, and a nut. The housing can define a first bore. The non-orbiting scroll can include a flange. The flange can define a second bore. The rod member can have a first axial end that is coupled to the housing. The rod member can extend from the first bore and through the second bore to a second axial end of the rod member. The rod member can include at least one set of external threads. The at least one set of external threads can be disposed about the second axial end of the rod member. The nut can be threadably engaged with the second axial end of the rod member. The second bore can be disposed axially between the nut and the housing. The primary forces acting within the rod member are tensile forces, while torsional shear forces are minimized.
Abstract:
A control system for controlling an output for a plurality of compressors includes a control unit receiving a first value from a first sensor and generating a first output based on the first value. The control unit receives a second value from a second sensor and derives a final output from the first output and the second value. A plurality of compressors receives the control commands from the control unit based on the final output.
Abstract:
A system is provided and includes a first controller, a non-transitory computer- readable medium and a second controller. The first controller is configured to control operation of at least one compressor circuit including one or more compressors. The non-transitory computer-readable medium is configured to store instructions of a stage profiler for execution by the controller. The instructions include: determining a target system capacity profile for the at least one compressor circuit; determining system stage capacities for stages of the at least one compressor circuit; selecting some of the system stage capacities based on the target system capacity profile to provide an available system capacity profile; generating modulation information based on the available system capacity profile and a load request signal; and controlling operation of the one or more compressors based on the modulation information and according to the available system capacity profile.
Abstract:
A refrigeration system includes first and second compressors, a condenser, first and second evaporators, and a valve. The first compressor is fluidly connected to first suction and discharge lines. The second compressor is fluidly connected to second suction and discharge lines. The second suction line is fluidly connected to the first discharge line. The condenser receives refrigerant from the second compressor. The first evaporator receives refrigerant from the condenser and discharges refrigerant to the first suction line. The second evaporator receives refrigerant from the condenser and discharges refrigerant to the second suction line. The valve is disposed between the first evaporator and the first suction line. The first suction line receives refrigerant when the valve is in a first position. The second suction line receives refrigerant when the valve is in a second position. The first compressor is bypassed when the valve is in the second position.
Abstract:
A compressor may include a shell, a compression mechanism, a driveshaft, a motor assembly, and a stator support member. The compression mechanism is disposed within the shell. The driveshaft drivingly is engaged with the compression mechanism. The motor assembly may be disposed within the shell and is drivingly engaged with the driveshaft. The motor assembly includes a rotor and a stator. The stator is fixed relative to the shell. The rotor may include an axially extending portion and a radially extending portion. The axially extending portion may be disposed radially outward relative to the stator. The radially extending portion may engage the driveshaft and may be disposed axially between the stator and the compression mechanism. The stator support member may be fixed relative to the shell and the stator. The stator support member may extend longitudinally through at least a portion of the stator.
Abstract:
A refrigeration system may include a compressor, a first heat exchanger, a first working fluid flow path, and a second working fluid flow path. The first heat exchanger receives working fluid discharged from the compressor. The first working fluid flow path may receive working fluid from the first heat exchanger and may include an evaporator and an evaporator control valve that is movable between a first position allowing fluid flow through the evaporator and a second position restricting fluid flow through the evaporator. The second working fluid flow path may receive working fluid from the first heat exchanger and may include a eutectic plate and a plate control valve that is movable between a first position allowing fluid flow through the eutectic plate and a second position restricting fluid flow through the eutectic plate.
Abstract:
A system is provided that includes mode and battery modules. The mode module, based on parameters, determines whether to operate in a shore power, engine or battery mode. One or more batteries are charged based on received utility power while in the shore power mode. The batteries, while in the engine mode, are charged based on power received from a power source. The battery module, while operating in the battery mode, determines a speed based on a temperature within a temperature controlled container of a vehicle and a state of charge of the batteries. The compressor is run at the speed while in the battery mode. While in the battery mode, the batteries are not being charged based on power from a shore power source and the power source from which power is received during the engine mode.
Abstract:
A system includes a converter and a controller to control a compressor and operates without receiving power supply from a thermostat. The converter receives a demand signal from the thermostat that is used to power the controller and charge a capacitor. When the thermostat de-asserts the demand signal, the charged capacitor powers the controller, which saves system parameters in a nonvolatile memory and enters a power save mode. The life of the nonvolatile memory is extended by alternately storing the system parameters in different memory locations. The system normalizes outdoor ambient temperature (OAT) during a demand cycle. The system determines OAT slope, which is used to select durations to operate the compressor at different capacities, by performing time based calculations during a demand cycle, demand cycle based calculations at the start of a demand cycle, or time and demand cycle based calculations during a demand cycle.
Abstract:
A compressor may include a shell, a compression mechanism, a bearing housing, a shroud, a stator, and a rotor. The compression mechanism includes a scroll member that is attached to the shell. The shroud is rotatably fixed relative to the shell and attached to the bearing housing. The stator is fixed relative to the shell. The shroud may have an annular body including an inner surface defining a center shroud passage. The stator may have an outer surface defining a stator passage. An outer surface of the rotor and an inner surface of the stator may be spaced apart and define a discharge gap in fluid communication with the center shroud passage and the stator passage. A continuous passage may extend between a top surface of the scroll member and a bottom surface of the shroud and may be in fluid communication with the shroud passage.
Abstract:
A system includes a compressor, an indoor fan, a thermostat, an indoor fan controller, and a compressor controller. The thermostat provides first and second signals based on indoor loading. The fan controller operates the fan in low speed mode and the compressor controller operates the compressor in low capacity mode when only the first signal is asserted. The compressor controller automatically switches the compressor to high capacity mode if only the first signal remains asserted past the low capacity mode runtime. The fan controller operates the fan in high speed mode when the second signal is asserted while the first signal is still asserted. The compressor controller continues to operate the compressor in high capacity mode and the fan controller operates the fan in low speed mode after the second signal is de-asserted, until the first signal is de-asserted, at which point the fan and compressor are turned off.