Abstract:
A method of producing shaped, self-supporting ceramic bodies includes preparing a mold by applying a gas-permeable, conformable material (20) to a shape-defining surface of a shaped parent metal (10). The gas-permeable material (20), when set or stable, provides a mold with a shaped surface which is defined by, and is therefore substantially congruent to, the shape-defining surface. Upon heating, the parent metal (10) melts and flows from the mold into a receptacle without disturbing the mold. Oxidation reaction product is then grown by oxidation of the molten parent metal with a vapor-phase oxidant to form an oxidation reaction product which grows into the mold cavity and is shaped by it. A ceramic body is recovered from the mold and has substantially the same shape as the pattern section (12,14,18) of the original shaped parent metal (10).
Abstract:
The present invention provides a method for producing a self-supporting ceramic composite by the oxidation of a parent metal (10) to form a polycrystalline ceramic material consisting essentially of the oxidation reaction product of the parent metal (10) with an oxidant, including a vapor-phase oxidant, and, optionally, one or more metallic constituents. A permeable filler material, such as a preform (14), with at least one surface bearing a permeble stratum (18), is contacted with a body of molten parent metal (10) heated to a temperature above its melting point but below the melting point of the oxidation reaction product. At least a portion of the oxidation reaction product is maintained in contact with and between the molten metal (10) and oxidant to transport the molten metal through the oxidation reaction product toward the permeable stratum (18) and into contact with the oxidant so that the oxidation reaction product continues to form at the interface between the oxidant and previously formed oxidation reaction product that has infiltrated the filler material. The reaction is continued to infiltrate at least a portion of the stratum (18) with the oxidation reaction product and to produce an intermediate ceramic body having an adjacent ceramic composite overlaid with a ceramic stratum. The ceramic stratum is removed from the underlying ceramic composite to produce a self-supporting ceramic composite having the surface established by the permeable stratum (18).
Abstract:
There is disclosed a method for producing a self-supporting ceramic body by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated i said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal.
Abstract:
A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal, includes embedding the mold of parent metal within a conformable bed of filler to provide therein a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surroundings of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated by the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold. The method provides ceramic composite articles having therein at least one cavity inversely replicating the shape of the mold which supplied the parent metal for oxidation.
Abstract:
A method for producing a self-supporting ceramic composite structure comprising a ceramic matrix embedding a filler (38) includes oxidizing a parent metal to form a polycrystalline material comprising the oxidation reaction product of the parent metal with an oxidant and, optionally, one or more metallic constituents, and the filler (38) embedded by the matrix. The method includes heating the parent metal to provide a first source (36) of molten parent metal and a reservoir (34) of molten parent metal and contacting the first source (36) of molten parent metal with a permeable bedding of filler (38). The first source (36) of molten parent metal is reacted with the oxidant to form the oxidation reaction product and is replenished from the reservoir (34) as the reacting continues for a time sufficient to grow the oxidation reaction product to a desired boundary and thereby embed at least a portion of the bedding of filler (38) within the oxidation reaction product to form the ceramic composite structure. The bedding of filler (38) may have any suitable shape, including that of a hollow body, the interior of which is contacted by the first source (36) of molten parent metal to grow the oxidation reaction product through the shaped, hollow body of filler.
Abstract:
Ceramic foams in which the open cells (3) are connected by a three dimensional, substantially continuous ceramic matrix formed of interconnected hollow ligaments (5), are made from an open-cell, reticulated precursor metal, i.e. a metal foam. The precursor metal first is treated so as to allow a support coating to form thereon, and thereafter the coated precursor is heated above the melting point of the metal in the presence of an oxidant to form an oxidation reaction product.
Abstract:
A method of producing self-supporting ceramic bodies (12) having a polymer component, which includes first providing a self-supporting ceramic body (12) comprising (i) a polycrystalline oxidation reaction product formed upon oxidation of a molten parent metal with an oxidant, and (ii) interconnected porosity (13) at least partially accessible from one or more surfaces of said ceramic body. The polymer is disposed or formed within the interconnected porosity (13). The polymer is situated so as to alter, modify or contribute to the properties of the ceramic body (12) originally formed.
Abstract:
A method for producing a self-supporting ceramic composite which comprises preparing a polycrystalline material as the oxidation reaction product of a parent metal with a vapor-phase oxidant, comminuting the resulting material to a particulate, forming a permeable mass of said particulate as filler, and infiltrating said particulate with an oxidation reaction product of a parent metal with a vapor-phase oxidant, thereby forming said ceramic composite.
Abstract:
A method is provided for producing a self-supporting ceramic body comprising a polycrystalline material comprised of the oxidation reaction product of a parent metal (10) and having therein one or more channels which inversely replicate the geometry of a configured fugitive metal (6). The method includes providing an assembly of the configured fugitive metal (6) and the parent metal (10), optionally including a bed of permeable filler (4), and heating the assembly to form a body of molten parent metal. The molten parent metal is oxidized under selected conditions to grow the polycrystalline material to engulf the configured fugitive metal (6) (and to infiltrate the filler (4), if the filler (4) is present) and to cause the fugitive metal (6) to disperse into the engulfing polycrystalline material thereby leaving behind as the one or more channels the space formerly occupied by the configured fugitive metal (6). The method provides self-supporting ceramic bodies having therein one or more channels inversely replicating the shape of the configured fugitive metal (6).
Abstract:
A method of producing self-supporting ceramic composite bodies of desired shaped by infiltrating a permeable preform with polycrystalline matrix material consisting essentially of an oxidation reaction product obtained by oxidation of a parent metal precursor, such as aluminum, and optionally containing therein metallic constituents. The composite body is formed by contacting a zone of a permeable preform, having at least one defined surface boundary spaced from said contacting zone, with a body of molten metal which is reacted with a suitable vapor-phase oxidant to form an oxidation reaction product. Within a certain temperature region, and optionally with one or more dopants in or on the parent metal or said permeable preform, molten parent metal migrates through previously formed oxidation reaction product into contact with the oxidant, causing the oxidation reaction product to grow into the preform toward said defined surface boundary so as to infiltrate the preform up to said defined surface boundary, and provide the composite structure of desired geometry.