Abstract:
Embodiments according to the present invention relate generally to PAG bilayer and PAG-doped unilayer structures using sacrificial polymer layers that incorporate a photoacid generator having a concentration gradient therein. Said PAG concentration being higher in a upper portion of such structures than in a lower portion thereof. Embodiments according to the present invention also relate to a method of using such bilayers and unilayers to form microelectronic structures having a three-dimensional space, and methods of decomposition of the sacrificial polymer within the aforementioned layers.
Abstract:
A method for manufacturing a three-dimensional structure includes forming a first structure having a relief pattern on a substrate, forming a sacrifice layer on the first structure such that the sacrifice layer can be filled in a concave part of the first structure and the sacrifice layer can cover a surface of a convex part of the first structure on a side opposite to the substrate, forming a second structure having a relief pattern on the sacrifice layer, and a fourth step of removing the sacrifice layer from between the first structure and the second structure, and thereby bringing the second structure into contact with the surface of the first structure.
Abstract:
A micro-structure is manufactured by patterning a sacrificial film, forming an inorganic material film on the pattern, providing the inorganic material film with an aperture, and etching away the sacrificial film pattern through the aperture to define a space having the contour of the pattern. The patterning stage includes the steps of (A) forming a sacrificial film using a composition comprising a cresol novolac resin and a crosslinker, (B) exposing patternwise the film to first high-energy radiation, (C) developing, and (D) exposing the sacrificial film pattern to second high-energy radiation and heat treating for thereby forming crosslinks within the cresol novolac resin.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
A MEMS device comprises a membrane layer and a back-plate layer formed over the membrane layer. The membrane layer comprises an outer portion and an inner portion raised relative to the outer portion and a sidewall for connecting the inner portion and the outer portion. The sidewall is non-orthogonal to the outer portion.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
The invention relates to a process for producing at least one air gap in a microstructure, which comprises: 1) the supply of a microstructure comprising at least one gap filled with a sacrificial material that decomposes starting from a temperature θ1, this gap being delimited over at least one part of its surface by a non-porous membrane, composed of a material that forms a matrix and of a pore-forming agent that decomposes at a temperature θ2
Abstract:
A method of fabricating a polymer-based capacitive ultrasonic transducer, which comprises the steps of: (a) providing a substrate; (b) forming a first conductor on the substrate; (c) coating a sacrificial layer on the substrate while covering the first conductor by the same; (d) etching the sacrificial layer for forming an island while maintaining the island to contact with the first conductor; (e) coating a first polymer-based material on the substrate while covering the island by the same; (f) forming a second conductor on the first polymer-based material; (g) forming a via hole on the first polymer-based material while enabling the via hole to be channeled to the island; and (h) utilizing the via hole to etch and remove the island for forming a cavity.
Abstract:
The invention relates to a method of realization of a sacrificial layer, including the steps of: lithography of a resin deposited on a substrate in order to supply a lithographed resist pattern on a substrate zone, the zone having a given size and a given form, the pattern occupying a given volume, annealed according to a thermal cycle of the lithographed resist pattern, the method being characterised in that it includes, according to the resin, the determination of the size and of the form of said zone of the substrate, and the determination of the volume of the resin deposited on said zone so that the thermal cycle annealing supplies a profile chosen from among the following profiles: a planarising domed profile and a “double air gap” profile.
Abstract:
A method of forming air gaps within a solid structure is provided. In this method, a sacrificial material is covered by an overlayer. The sacrificial material is then removed through the overlayer to leave an air gap. Such air gaps are particularly useful as insulation between metal lines in an electronic device such as an electrical interconnect structure. Structures containing air gaps are also provided.