Abstract:
The invention relates to color sample device for showing color information of a color sample, having a substrate element for carrying the color sample, the color sample having at least one display surface, which displays the color of the color sample, and which is connected and arranged at the substrate element, a data storage device, which contains color information data, which is machine-readable and which is configured for a wireless reading of the color information data from the data storage device by the data processing apparatus according to the invention. The invention also relates to a method of production and the data processing apparatus.
Abstract:
The present application describes techniques to image biological tissue to determine biological information of an imaged tissue sample such as changes in hemoglobin concentrations, blood flow rate (pulse), and/or spatio-temporal features. Embodiments include illuminating the tissue sample with light in the near-infrared (NIR) spectrum, which is minimally absorbed but scattered through the tissue sample. By detecting the NIR light that is attenuated through, transmitted through, and/or reflected off the tissue to be imaged, the resulting NIR intensity signals may be further analyzed to provide this data. Embodiments include using multiple NIR light sources having varying wavelengths to obtain changes in the oxy- and deoxy-hemoglobin concentrations of the imaged tissue region. The tissue sample may be imaged over a time period, and the NIR images may be viewed statically or in real time after post-processing analyses have been performed.
Abstract:
An apparatus and method are provided. In particular, at least one first electro-magnetic radiation may be provided to a sample and at least one second electro-magnetic radiation can be provided to a non-reflective reference. A frequency of the first and/or second radiations varies over time. An interference is detected between at least one third radiation associated with the first radiation and at least one fourth radiation associated with the second radiation. Alternatively, the first electro-magnetic radiation and/or second electro-magnetic radiation have a spectrum which changes over time. The spectrum may contain multiple frequencies at a particular time. In addition, it is possible to detect the interference signal between the third radiation and the fourth radiation in a first polarization state. Further, it may be preferable to detect a further interference signal between the third and fourth radiations in a second polarization state which is different from the first polarization state. The first and/or second electro-magnetic radiations may have a spectrum whose mean frequency changes substantially continuously over time at a tuning speed that is greater than 100 Tera Hertz per millisecond.
Abstract:
An imaging apparatus and method are provided for improving discrimination between parts of a scene enabling enhancement of an object in the scene. A camera unit is arranged to capture first and second images from the scene in first and second distinct and spectrally spaced apart wavebands. An image processing unit processes the images so captured and processes polarimetric information in the images to enable better discrimination between parts of the scene. An image of the scene, including a graphical display of the polarimetric information, may be displayed on a visual display unit thus enhancing an object in the scene for viewing by a user. Correlation parameters indicating, possibly on a pixel-by-pixel basis, the correlation between the actual image intensity at each angle of polarization and a modelled expected image intensity may be used to enhance the visibility of an object.
Abstract:
A modular device includes base and color sensing portions. The color sensing portion has a face, a controlled light source offset from the face to define an interior, the face configured to engage a target surface about a perimeter of the device housing wherein ambient light is restricted from entering the interior. A color sensor receives light reflected from the target surface and generates output signals representative of a surface color. The base portion communicates with the color sensor and a user device having a hosted program which generates a user interface enabling users to provide control input for the color sensor. The program further receives the output signals from the color sensing device and displays a first image of the detected color, and displays a second image of a user-selected color beside the first image. Color data values are further displayed corresponding to the difference between displayed colors.
Abstract:
A computer implemented method. The method includes obtaining (10), using a processor, spectral reflectance data from a spectrophotometric measurement of a target coating on a surface, wherein the measurement was taken at a specular angle, and removing (12), using the processor, at least a portion of the specular reflectance data that is attributable to a glossy coating of the surface. The method also includes constructing (14), using the processor, at least one spectral reflectance curve, and identifying (20), using the processor, at least one type of pigmentation effect of the target coating based at least in part on the at least one spectral reflectance curve.
Abstract:
Disclosed is a multi-channel light measurement system adapted to illuminate and measure a test sample in a vessel. The multi-channel light measurement system has at least one photodetector per channel and a variable integrate and hold circuit coupled to each photodetector, the variable integrate and hold circuit allows adjustment of a sampling factor selected from a group of an integration time, a value of capacitance, an area of a discrete photodetector array, or any combination thereof. The system may readily equilibrate reference intensity output for multiple channels. Methods and apparatus are disclosed, as are other aspects.
Abstract:
A variable-wavelength interference filter includes a pair of substrates, a pair of reflection films provided on these substrates, a first electrode, a second electrode, a first conduction electrode provided on the first substrate and provided from the first electrode up to an outer peripheral edge side of the first substrate over the first electrode, a second conduction electrode provided on the second substrate and electrically connected to the first conduction electrode, and a bonding layer that bonds bonding surfaces of the substrates together. The first substrate has a first conduction electrode surface facing a contact surface where the first conduction electrode and the second conduction electrode contact each other. The second substrate has a second conduction electrode surface facing the contact surface. A minimum distance from the first conduction electrode surface to the second conduction electrode surface is different from a minimum distance from the first bonding surface to the second bonding surface.
Abstract:
Provided is a spectrum analysis apparatus including a processing unit configured to generate analysis data using an analysis function in which a linear function and a logarithmic function are included as function elements and an intensity value is set as a variable from measurement data including the intensity value of light acquired by detecting the light from a measurement target object using a plurality of light-receiving elements having different detection wavelength bands.