Abstract:
The present invention provides a routing structure and display panel. The routing structure includes a plurality of routing, disposed separately. Each routing corresponds to a symbol, and the symbol is disposed on the routing to act as a part of the routing to conduct electricity. In this manner, the routing structure and display panel of the present invention allow expansion of routing width, effectively reduce RC constant and energy-consumption, and improve yield rate.
Abstract:
An assembly is provided of an electro-physical transducer (10) on a flexible foil (20) with a carrier (40). The flexible foil (20) has a first main surface (22) provided with at least a first electrically conductive track (24) connected to the electro-physical transducer and opposite said first main surface a second main surface (23) facing towards the carrier. At least a first incision (25a) extends through the flexible foil alongside said at least a first electrically conductive track, therewith defining a strip shaped portion (27) of the flexible foil that carries a portion of the at least a first electrically conductive track. The at least a first electrically conductive track is electrically connected to an electrical conductor (421) of the carrier, and the flexible foil is attached to the carrier with its strip shaped portion.
Abstract:
A circuit board includes a signal plane and a ground plane. The signal plane is configured to have a plurality of signal traces. Each of the signal traces includes a plurality of straight line segments. Each line segment extends along a path different from the others. The ground plane includes a plurality of tiles connected in an array. Each tile is formed by ground traces. The straight line segments of each signal trace mapped on the ground plane are arranged at an angle relative to any one ground trace of the tiles. The angle is defined within a range determined by one of ground traces of a tile and an adjacent diagonal line of the tile. A method for laying out such a circuit board is also provided.
Abstract:
A printed circuit board includes a first layout layer, a second layout layer, a copper foil layer, a first via and a second via. The first layout layer has a first signal line and a second signal line, each of which has a curved first portion. The second layout layer has a third signal line and a fourth signal line, each of which also has a curved first portion. The curved first portions of the first signal line, the second signal line, the third signal line and the fourth signal line are coupled to the first via and the second via. In this case, the curved first portions of the first signal line, the second signal line, the third signal line and the fourth signal line cooperatively generate spiral inductance characteristic.
Abstract:
An exemplary printed circuit board includes a substrate, a differential transmission line, and at least two weld pad pairs. The differential transmission line and the at least two weld pad pairs are disposed on the substrate. The differential transmission line includes two parallel signal conductors disposed on the substrate. Each of the two signal conductors is electrically connected to an edge of one of the weld pads of a respective pair of the at least two weld pad pairs. Thereby, the two signal conductors of the differential transmission line can extend in the same distance anywhere, particularly in the position where the two signal conductors pass the two weld pad pairs. As a result, the coupling performance and the capability of the differential transmission line to resist electromagnetic interference are both enhanced.
Abstract:
A printed circuit board includes a group of pads suitable to be soldered to a respective group of solder-balls of a device. Each pad of the group has a crack initiation point on its perimeter at a location where cracks in a solder-ball are anticipated to start after that solder-ball is soldered to that pad. For a pad of that group having a microvia located therein, a center of that microvia is located farther than a center of that pad from its crack initiation point. For a pad of that group having a trace merging along a portion of its perimeter, that portion does not include a vicinity of that crack initiation point.
Abstract:
A printed circuit board includes a base and a signal trace laid on the base. The signal trace includes a plurality of straight line segments parallel to the first fibers. The signal trace is laid on the base in such a manner that the line segments of the signal trace mapped on the base partly superpose the first fibers and partly superpose gaps between two adjacent first fibers.
Abstract:
An electrical connection board includes electrical connection terminals on one face with a view toward connecting with a semiconductor component and electrical connection tracks connected respectively to these terminals. The terminals are arranged in a square matrix having two orthogonal directions. On its face, the board includes a multiplicity of identical adjacent connection groups, each group having N adjacent terminals and N tracks placed along this direction while extending towards an edge of the matrix. The terminals of a group are offset by one pitch relative to the terminals of an adjacent group. The board and a semiconductor component are connected together by electrical connection balls.
Abstract:
A printed circuit board includes a first layout layer, a second layout layer, a copper foil layer, a first via and a second via. The first layout layer has a first signal line and a second signal line, each of which has a curved first portion. The second layout layer has a third signal line and a fourth signal line, each of which also has a curved first portion. The curved first portions of the first signal line, the second signal line, the third signal line and the fourth signal line are coupled to the first via and the second via. In this case, the curved first portions of the first signal line, the second signal line, the third signal line and the fourth signal line cooperatively generate spiral inductance characteristic.
Abstract:
A flexible wiring board is provided having a wiring structure which can reduce transmission loss by reducing impedance mismatching even if being folded in a three-dimensional manner. In a flexible wiring board 10 having a characteristic impedance control circuit 20, the flexible wiring board has a planar projection shape of a folded spot 20A in the characteristic impedance control circuit after folding in an arc state along a tangent.