Abstract:
A payload launch system is described that provides one launch solution suitable for multiple applications. A payload, such as a UAV, is launched from a sealed launch tube using compressed gas or other energy source. The launch tube can be used to transport and protect the payload from harsh environments for extended periods prior to launch.
Abstract:
An unmanned aerial vehicle (UAV) launch tube that comprises a tethered sabot configured to engage a UAV within a launcher volume defined by an inner wall, the tethered sabot dimensioned to provide a pressure seal at the inner wall and tethered to the inner wall, and wherein the tethered sabot is hollow having an open end oriented toward a high pressure volume and a tether attached within a hollow of the sabot and attached to the inner wall retaining the high pressure volume or attach to the inner base wall. A system comprising a communication node and a launcher comprising an unmanned aerial vehicle (UAV) in a pre-launch state configured to receive and respond to command inputs from the communication node.
Abstract:
Short takeoff and landing aircraft are disclosed. An example fixed wing aircraft includes a primary powertrain to provide power to a propulsion unit, a secondary powertrain to provide power to the propulsion unit, and a detachable power coupling to transfer power to the secondary powertrain from a source external to the fixed wing aircraft during takeoff.
Abstract:
A system for launching an unmanned aerial vehicle (UAV) from a moving platform, the system comprising: a platform configured to carry the UAV; one or more sensors configured to measure forces acting between said platform and said UAV in one or more directions; a mooring mechanism configured to moor said UAV to said platform; and a controller configured to: transmit at least one trimming command to said UAV based on measurements of said one or more sensors, and cause said mooring mechanism to release said UAV from said platform following the transmitting of the at least one trimming command, when the measurements of said one or more sensors indicate that a lift force is sufficiently close to a weight of the UAV.
Abstract:
Systems and methods to launch an aircraft are disclosed. In one embodiment, a system to launch an aircraft comprises a launch arm comprising at least one load cell, an aircraft coupled to the launch arm, and a release mechanism in communication with the at least one load cell, wherein the release mechanism releases the aircraft when the at least one load cell indicates that a load on the launch arm is below a predetermined threshold. Other embodiments may be described.
Abstract:
An embodiment of the invention is directed to a system for controlling and managing a small unmanned air vehicle (UAV) between capture and launch of the UAV. The system includes an enclosure that provides environmental protection and isolation for multiple small UAVs in assembled and/or partially disassembled states. Control and management of the UAVs includes reorientation of a captured UAV from a landing platform and secure hand-off to the enclosure, decontamination, de-fueling, ingress to the enclosure, downloading of mission payload, UAV disassembly, stowage, retrieval and reassembly of the UAV, mission uploading, egress of the UAV from the enclosure, fueling, engine testing and launch readiness. An exemplary system includes two or more robots controlled by a multiple robot controller for autonomously carrying out the functions described above. A modular, compact, portable and autonomous system of UAV control and management is described.
Abstract:
An expendable rotary wing unmanned aircraft capable of storage in a cylindrical housing includes a longitudinally extending body having an upper end and a lower end; and a pair of counter-rotating coaxial rotors each located at respective ends of longitudinally-extending body, wherein each rotor includes two or more blades, each blade rotatably coupled to a remainder of the rotor at a hinged joint and thereby extending along a length of the body in a storage configuration and extending radially outward from the body in a flight configuration.
Abstract:
An autonomous or semi-autonomous device or vehicle, such as a drone, and method for controlling the same, the method including sensing a physical manipulation or an aspect of a physical manipulation of the autonomous or semi-autonomous device or vehicle, selecting an action and/or modifying an aspect of the action according to the sensed physical manipulation or physical manipulation aspect, and instructing the autonomous or semi-autonomous device or vehicle to perform the action.
Abstract:
An object of the invention is a launching device for launching an object from a launch pad, wherein said apparatus comprises a frame (1) affixed to the launch pad, a push element (2) for pushing an object detached from the launch pad, a flexible force storing element (3) for turning the push element (2) in relation to the frame (1), a casing (4) for holding the launchable object in place against the push element (2), and a lock element (6) for locking the casing (4) in standby position and for bringing the launching device in a position of ready to operate such that the frame (1) and the push element (2) are superposed and connected to each other substantially at one edge of the device, the frame (1) and the push element (2) being substantially parallel, force being stored in the force storing element (3) for displacing the push element (2) and that said stored force being releasable at a moment of launch. The force storing element (3) is composed of at least one spring (3`) or elastic band (3``) or an extension spring functioning as an elastic band, and the casing (4) has been attached fixedly to the frame (1) at its fixing point (9).
Abstract:
A drone control method includes commanding a drone launched from a vehicle to execute a predefined schedule of flight commands such that the drone occupies a series of locations within a predefined radius from a buoy, which is also launched from the vehicle, to identify a drone position relative to the buoy associated with a maximum signal strength of the communication signal. The execution of the predefined schedule may be in response to receipt of a communication signal from an emergency responder.