Abstract:
A synthetic quartz glass optical member for an ultraviolet laser, where the quartz glass has a hydroxyl content of 10-100 ppm, a chlorine content of 200 ppm or less, a hydrogen content of 1.times.10.sup.16 molecules/cm.sup.3 or less, a homogeneity of refractive index of 5.times.10.sup.-6 or less in terms of .DELTA.n, and a birefringence of 5 nm/cm or less.
Abstract translation:一种用于紫外线激光的合成石英玻璃光学构件,其中石英玻璃的羟基含量为10-100ppm,氯含量为200ppm以下,氢含量为1×1016分/ cm 3以下,折射率均匀性 在DELTA n方面为5×10 -6以下,双折射为5nm / cm以下。
Abstract:
A synthetic quartz glass optical member for an ultraviolet laser, suitably applicable as a stepper lens of a lithographer using an excimer laser beam and other optical members, wherein the quartz glass has a hydroxyl content of 10 to 100 ppm, a chlorine content of 200 ppm or less, a hydrogen content of 1.times.10.sup.16 molecules/cm.sup.3 or less, a homogeneity of refractive index of 5.times.10.sup.-6 or less in terms of .DELTA.n, and a birefringence of 5 nm/cm or less. The optical member can be produced by subjecting a volatile silicon compound to flame hydrolysis with oxyhydrogen flame, depositing the formed particulate silica on a heat-resistant support to prepare a porous silica matrix, heating the matrix in a vacuum as high as 1.times.10.sup.-2 Torr or above to a temperature of 1,400 .degree. C. or above to effect dehydration and degassing, homogenizing the resultant transparent quartz glass into highly homogeneous quartz glass free from striae in at last one direction, molding the highly homogeneous quartz glass, and annealing the molded glass.
Abstract:
Quartz glass obtained by flame-hydrolyzing a glass-forming raw material to obtain fine particles of quartz glass, having the fine particles of quartz glass deposited and grown on a substrate to obtain a porous quartz glass product and heating the porous quartz glass product to obtain a transparent quartz glass product, which has an OH content of not more than 10 ppm and a halogen content of at least 400 ppm and which contains hydrogen.
Abstract:
The present invention providesa process for the dehydrating and purifying treatment by heating a porous glass preform for an optical fiber comprising passing the porous glass preform through a muffle tube having a SiC layer at least on its inner surface at a high temperature under an atmosphere comprising an inert gas and a silicon halogenide gas;a process for the fluorine-doping treatment by heating a porous glass preform for an optical fiber comprising passing a porous glass preform through a muffle tube having a SiC layer at least on its inner surface at a high temperature under an atmosphere comprising a fluorine compound gas and an inert gas; anda process for the vitrifying treatment by heating a porous glass preform for an optical fiber comprising passing the preform, which has been previously dehydrated and purified, through a muffle tube having a SiC layer at least on its inner surface at a high temperature under an atmosphere gas.
Abstract:
A glass preform is produced by forming a glass soot composite body having a core portion consisting of a solid glass and a peripheral portion consisting of a porous glass mass, removing trapped gas and water from pores of the soot composite body by heating the soot composite body under a pressure lower than several ten Torr. at a temperature at which the porous glass mass is not vitrified, filling the pores in the porous glass mass of the soot composite body with a gas containing SiF.sub.4, the partial pressure of which is a function of the desired specific difference of refractive index, thus uniformly adding fluorine to the soot glass mass, and vitrifying the fluorine-added soot glass mass into a transparent glass mass to form a glass preform.
Abstract:
The invention provides an efficient method for the dehydration, i.e. removal of silicon-bonded hydroxy groups, of a porous silica body before vitrification as a precursor of quartz glass-made optical fibers obtained by the flame hydrolysis of a silicon compound and deposition of fine silica particles formed therefrom. The problems and disadvantages accompanying the use of conventional dehydrating agents can be solved in the invention by heating the hydroxy-containing porous silica body at 1000.degree. to 1300.degree. C. in an atmosphere containing thionyl fluoride or sulfuryl fluoride as the dehydrating agent which is also effective as a dechlorinating agent so that the optical fibers prepared from the quartz glass material of the invention are highly transparent and resistant against hydrogen-containing atmosphere at elevated temperatures.
Abstract:
An improvement in a method for producing a synthetic hydroxyl ion-free quartz glass wherein a hydrogen free silicon compound is heated in a hydrogen-free gas stream while the gas stream is passed through an induction coupled plasma burner, the gas stream containing elemental and/or bound oxygen and the oxidation product is deposited on a refractory support as a vitreous mass, the improvement lying in including in the gas stream a gaseous hydrogen-free, thermally decomposable compound which yields fluorine in an amount of at least 500 gms. per kilogram of silica to be produced; an apparatus for producing a synthetic OH ion-free quartz glass comprising an induction coupled plasma burner which burner has disposed thereabout 3 concentric quartz glass tubes disposed in stepped configuration of which the outermost tube is the longest and the innermost tube is the shortest. The apparatus includes means for passing through the innermost tube a hydrogen-free gas stream containing elemental oxygen and/or bound oxygen together with a gaseous hydrogen free thermally decomposable compound which yields fluorine. The apparatus further contains means for passing a separating gas such as oxygen through the space defined by the innermost tube and the middle tube and the middle tube and the outermost tube.
Abstract:
A method of forming an optical element is provided. The method includes producing silica-based soot particles using chemical vapor deposition, the silica-based soot particles having an average particle size of between about 0.05 μm and about 0.25 μm. The method also includes forming a soot compact from the silica-based soot particles and doping the soot compact with a halogen in a closed system by contacting the silica-based soot compact with a halogen-containing gas in the closed system at a temperature of less than about 1200° C.
Abstract:
A method of producing an optical fiber preform includes a silica glass body forming step of forming a silica glass body to be at least a portion of a core portion. The method includes an alkali-metal-doped silica glass body forming step of forming an alkali-metal-doped silica glass body doped with an alkali metal around the silica glass body such that the alkali-metal-doped silica glass body contacts the silica glass body. The method further includes a diffusing step of diffusing the alkali metal from the alkali-metal-doped silica glass body to the silica glass body by a heat treatment.
Abstract:
A method for forming an optical fiber preform and fibers drawn from the preform. The method includes forming a soot cladding monolith, inserting a consolidated core cane into the internal cavity, and processing the resulting core-cladding assembly to form a preform. Processing may include exposing the core-cladding assembly to a drying agent and/or dopant precursor, and sintering the core-cladding assembly in the presence of a reducing agent to densify the soot cladding monolith onto the core cane to form a preform. The preform features low hydroxyl content and low sensitivity to hydrogen. Fibers drawn from the preform exhibit low attenuation losses from absorption by the broad band centered near 1380 nm.