Abstract:
A glass composite for use in Extreme Ultra-Violet Lithography (EUVL) is provided. The glass composite includes a first silica-titania glass section. The glass composite further includes a second doped silica-titania glass section mechanically bonded to a surface of the first silica-titania glass section, wherein the second doped silica-titania glass section has a thickness of greater than about 1.0 inch.
Abstract:
Silica-titania glasses with small temperature variations in coefficient of thermal expansion over a wide range of zero-crossover temperatures and methods for making the glasses. The method includes a cooling protocol with controlled anneals over two different temperature regimes. A higher temperature controlled anneal may occur over a temperature interval from 750-950° C. or a sub-interval thereof. A lower temperature controlled anneal may occur over a temperature interval from 650-875° C. or a sub-interval thereof. The controlled anneals permit independent control over CTE slope and Tzc of silica-titania glasses. The independent control provides CTE slope and Tzc values for silica-titania glasses of fixed composition over ranges heretofore possible only through variations in composition.
Abstract:
A doped silica-titania (“DST”) glass article that includes a glass article having a glass composition comprising a silica-titania base glass containing titania at 7 to 14 wt. % and a balance of silica, and a dopant selected from the group consisting of (a) F at 0.7 to 1.5 wt. %, (b) B2O3 at 1.5 to 5 wt. %, (c) OH at 1000 to 3000 ppm, and (d) B2O3 at 0.5 to 2.5 wt. % and OH at 100 to 1400 ppm. The glass article has an expansivity slope of less than about 1.3 ppb/K2 at 20° C. For DST glass articles doped with F or B2O3, the OH level can be held to less than 10 ppm, or less than 100 ppm, respectively. In many aspects, the DST glass articles are substantially free of titania in crystalline form.
Abstract:
The Ti3+ ions present in Ti-doped silica glass cause a brown staining of the glass, causing inspection of the lens to become more difficult. Known methods for reducing Ti3+ ions in favor of Ti4+ ions in Ti-doped silica glass include a sufficiently high proportion of OH-groups and carrying out an oxygen treatment prior to vitrification, which both have disadvantages. In order to provide a cost-efficient production method for Ti-doped silica glass, which at a hydroxyl group content of less than 120 ppm shows an internal transmittance (sample thickness 10 mm) of at least 70% in the wavelength range of 400 nm to 1000 nm, the TiO2—SiO2 soot body is subjected to a conditioning treatment with a nitrogen oxide prior to vitrification. The blank produced in this way from Ti-doped silica glass has the ratio Ti3+/Ti4+≦5×10−4.
Abstract:
A blank of TiO2—SiO2 glass for a mirror substrate for use in EUV lithography has a low need for adaptation to optimize the progression of the coefficient of thermal expansion, and consequently also the progression of the zero crossing temperature Tzc. The TiO2—SiO2 glass has at a mean value of the fictive temperature Tf in the range between 920° C. and 970° C. a dependence expressed as the differential quotient dTzc/dTf of its zero crossing temperature Tzc on the fictive temperature Tf of less than 0.3.
Abstract:
A method for producing a blank from titanium-doped, highly silicic-acidic glass having a specified fluorine content for use in EUV lithography is described, in which the thermal expansion coefficient over the operating temperature remains at zero as stably as possible. The course of the thermal expansion coefficient of Ti-doped silica glass depends on a plurality of influencing factors. In addition to the absolute titanium content, the distribution of the titanium is of significant importance, as is the ratio and distribution of additional doping elements, such as fluorine. In the method, fluorine-doped TiO2—SiO2 soot particles are generated and processed further via consolidation and vitrifying into the blank, and, by flame hydrolysis of input substances containing silicon and titanium, TiO2—SiO2-soot particles are formed, exposed to a reagent containing fluorine in a moving powder bed, and converted to the fluorine-doped TiO2—SiO2-soot particles.
Abstract:
A method for producing a silica glass blank co-doped with titanium and fluorine for use in EUV lithography includes (a) producing a TiO2—SiO2 soot body by flame hydrolysis of silicon- and titanium-containing precursor substances, (b) fluorinating the TiO2—SiO2 soot body to form a fluorine-doped TiO2—SiO2 soot body, (c) treating the fluorine-doped TiO2—SiO2 soot body in a water vapor-containing atmosphere to form a conditioned soot body, and (d) vitrifying the conditioned soot body to form the blank. The blank has an internal transmission of at least 60% in the wavelength range of 400 to 700 nm at a sample thickness of 10 mm, a mean OH content in the range of 10 to 100 wt. ppm and a mean fluorine content in the range of 2,500 to 10,000 wt. ppm. Titanium is present in the blank in the oxidation forms Ti3+ and Ti4+.
Abstract:
A member is made of titania-doped quartz glass in which striae have a curvature radius of at least 150 mm in a surface perpendicular to an EUV-reflecting surface. The member free of exposed striae and having a high flatness is useful in EUV lithography.
Abstract:
One aspect relates to a method for the manufacture of doped quartz glass. Moreover, one aspect relates to quartz glass obtainable according to the method including providing a soot body, treating the soot body with a gas, heating an intermediate product and vitrifying an intermediate product.
Abstract:
A blank made of titanium-doped silica glass for a mirror substrate for use in EUV lithography is provided. The blank includes a surface portion to be provided with a reflective film and having an optically used area (CA) over which a coefficient of thermal expansion (CTE) has a two-dimensional inhomogeneity (dCTE) distribution profile averaged over a thickness of the blank. A maximum inhomogeneity (dCTEmax) of less than 5 ppb/K is defined as a difference between a CTE maximum value and a CTE minimum value. The dCTEmax is at least 0.5 ppb/K. The CA forms a non-circular area having a centroid. The dCTE distribution profile is not rotation-symmetrical and is defined over the CA, such that straight profile sections normalized to a unit length and extending through the centroid of the area yield a dCTE family of curves forming a curve band with a bandwidth of less than 0.5×dCTEmax.