Abstract:
A PCB page blank includes a flexible substrate, a curable adhesive, a conductive layer, and a conductive layer support. The flexible substrate receives an opaque negative circuit pattern thereon. Portions of the curable adhesive not obscured by the circuit pattern may bond to portions of the conductive layer when exposed to light. The bonded portions of the conductive layer shear or tear from non-bonded portions of the conductive layer such that the bonded portions remain with the flexible substrate and the non-bonded portions remain with the conductive layer support when the flexible substrate and the conductive layer support are separated. The flexible substrate and the bonded portions of the conductive layer thus form a PCB prototype with the bonded portions of the conductive layer forming circuit traces of the circuit pattern.
Abstract:
There are provided a conductive nanowire network, a conductive board and transparent electrode utilizing it, and a method for producing the same. The conductive nanowire network of the invention has essentially unbroken, continuous conductive nanowires randomly formed into a network. In the method for producing a conductive nanowire network according to the invention, nanofibers are applied in a random network-like fashion onto a substrate covered with a conductive layer, the conductive layer regions that are not covered with the nanofibers are removed, and then the nanofibers are removed. The network structure (wire diameter and network density) are also controlled to obtain a transparent electrode exhibiting both transparency and conductivity.
Abstract:
A PCB page blank includes a flexible substrate, a curable adhesive, a conductive layer, and a conductive layer support. The flexible substrate receives an opaque negative circuit pattern thereon. Portions of the curable adhesive not obscured by the circuit pattern may bond to portions of the conductive layer when exposed to light. The bonded portions of the conductive layer shear or tear from non-bonded portions of the conductive layer such that the bonded portions remain with the flexible substrate and the non-bonded portions remain with the conductive layer support when the flexible substrate and the conductive layer support are separated. The flexible substrate and the bonded portions of the conductive layer thus form a PCB prototype with the bonded portions of the conductive layer forming circuit traces of the circuit pattern.
Abstract:
Methods of fabricating tamper-respondent assemblies are provided which include a tamper-respondent electronic circuit structure. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor. The tamper-respondent sensor includes, for instance, at least one flexible layer having opposite first and second sides, and circuit lines forming at least one resistive network. The circuit lines are disposed on at least one of the first or second side of the at least one flexible layer, and have a line width Wl≦200 μm, as well as a line-to-line spacing width Ws≦200 μm. In certain enhanced embodiments, the tamper-respondent sensor includes multiple flexible layers, with a first flexible layer having first circuit lines, and a second flexible layer having second circuit lines, where the first and second circuit lines may have different line widths, different line-to-line spacings, and/or be formed of different materials.
Abstract:
One embodiment of the present invention provides a highly reliable display device. In particular, a display device to which a signal or a power supply potential can be supplied stably is provided. Further, a bendable display device to which a signal or a power supply potential can be supplied stably is provided. The display device includes, over a flexible substrate, a display portion, a plurality of connection terminals to which a signal from an outside can be input, and a plurality of wirings. One of the plurality of wirings electrically connects one of the plurality of connection terminals to the display portion. The one of the plurality of wirings includes a first portion including a plurality of separate lines and a second portion in which the plurality of lines converge.
Abstract:
Disclosed is a lighting device which comprises: an optical member comprising a protruding optical pattern forming a gap with an adjacent layer; at least one light emitting unit inserted into the optical member; and a resin layer formed on the optical member and the at least one light emitting unit, whereby it is possible to obtain an effect that the shapes of light change depending on the viewing angle when viewing the light source by producing various protruding optical patterns, an effect that the whole thickness can be reduced, and an effect that the degree of design freedom can be enhanced when designing products thanks to an enhanced flexibility.
Abstract:
A conductor trace is formed on a base insulating layer. The conductor trace includes two terminal portions and one wiring portion. The wiring portion is formed to connect the two terminal portions to each other and extend from each terminal portion. A metal cover layer is formed to cover the terminal portion and the wiring portion of the conductor trace and continuously extend from a surface of the terminal portion to a surface of the wiring portion. The metal cover layer is made of metal having magnetism lower than magnetism of nickel, and is made of gold, for example. A cover insulating layer is formed on the base insulating layer to cover a portion, of the metal cover layer formed on the conductor trace, covering the wiring portion and not to cover a portion of the metal cover layer covering the terminal portion.
Abstract:
One embodiment of the present invention provides a highly reliable display device. In particular, a display device to which a signal or a power supply potential can be supplied stably is provided. Further, a bendable display device to which a signal or a power supply potential can be supplied stably is provided. The display device includes, over a flexible substrate, a display portion, a plurality of connection terminals to which a signal from an outside can be input, and a plurality of wirings. One of the plurality of wirings electrically connects one of the plurality of connection terminals to the display portion. The one of the plurality of wirings includes a first portion including a plurality of separate lines and a second portion in which the plurality of lines converge.
Abstract:
A method of making an electronic device may include forming at least one circuit layer that includes solder pads on a substrate and forming at least one liquid crystal polymer (LCP) solder mask having mask openings therein. The method may also include forming at least one thin film resistor on the LCP solder mask and coupling the at least one LCP solder mask to the substrate so that the at least one thin film resistor is coupled to the at least one circuit layer and so that the solder pads are aligned with the mask openings.
Abstract:
A multilayer structure for an electronic device having a flexible substrate film (202) for accommodating electronics (204); at least one electronic component (204) provided on said substrate film (202); and a number of conductive traces (206) provided on said substrate film (202) for electrically powering and/or connecting electronics including said at least one electronic component (204), wherein at least one preferably thermoformed cover (210) is attached to said substrate film (202) on top of said at least one electronic component (204), the at least one thermoformed cover (210) and the substrate film (202) accommodating the electronics (204) being overmolded with thermoplastic material (208). The invention also relates to a method for manufacturing a multilayer structure for an electronic device