Abstract:
The following method steps are known for producing cylindrical components from synthetic quartz glass containing fluorine: producing a SiO2 soot body, removing hydroxyl groups from the soot body, loading the soot body with fluorine, post-chlorinating the soot body loaded with fluorine, and vitrifying the soot body to form the cylindrical component. In order to achieve distributions in particular of fluorine that are especially reproducibly homogeneous axially and radially, according to the invention it is proposed that a concentration of hydroxyl groups in the range of 1 to 300 weight ppm is set in the soot body upon the drying and an average fluorine content of at least 1500 weight ppm is set upon the loading with fluorine, and that loading with chlorine occurs during the post-chlorination, which loading results in an average chlorine content of at least 50 weight ppm in the synthetic quartz glass after the vitrification, under the further stipulation that the weight ratio of the contents of fluorine and chlorine is less than 30.
Abstract:
Provided is an inexpensive low-loss optical fiber suitably used in an optical transmission network. An optical fiber includes a core, an optical cladding, and a jacket. The core has a relative refractive index difference between 0.2% and 0.32% and has a refractive index volume between 9%·μm2 and 18%·μm2. The jacket has a relative refractive index difference between 0.03% and 0.20%. Glass constituting the core has a fictive temperature between 1400° C. and 1560° C. Stress remaining in the core is compressive stress. A cutoff wavelength measured on a fiber having a length of 2 m is 1300 nm or more and a cutoff wavelength measured on a fiber having a length of 100 m is 1500 nm or less. An effective area at a wavelength of 1550 nm is 110 μm2 or more. A attenuation at a wavelength of 1550 nm is 0.19 dB/km or less.
Abstract:
A known refraction-sensitive optical fiber comprises a core zone with an index of refraction nK, a jacket zone surrounding the core zone, said jacket zone having an index of refraction nM, and an annular zone made of quartz glass doped with fluorine, said annular zone surrounding the jacket zone and having an index of refraction nF, where nF
Abstract:
A method of making a silica glass having a uniform fictive temperature. The glass article is heated at a target fictive temperature, or heated or cooled at a rate that is less than the rate of change of the fictive temperature, for a time that is sufficient to allow the fictive temperature of the glass to come within 3° C. of the target fictive temperature. The silica glass is then cooled from the target fictive temperature to a temperature below the strain point of the glass at a cooling rate that is greater than the relaxation rate of the glass at the target fictive temperature. The silica glass has a fictive temperature that varies by less than 3° C. after the annealing step. A silica glass made by the method is also described.
Abstract:
The present invention relates to a method for manufacturing a preform for optical fibers, wherein deposition of glass-forming compounds on the substrate takes place. The present invention furthermore relates to a method for manufacturing optical fibers, wherein one end of a solid preform is heated, after which an optical fiber is drawn from said heated end.
Abstract:
The invention relates to a method for producing a blank mold from synthetic quartz glass by using a plasma-assisted deposition method, according to which a hydrogen-free media flow containing a glass starting material and a carrier gas is fed to a multi-nozzle deposition burner. The glass starting material is introduced into a plasma zone by the deposition burner and is oxidized therein while forming SiO2 particles, and the SiO2 particles are deposited on a deposition surface while being directly vitrified. In order to increase the deposition efficiency, the invention provides that the deposition burner (1) focuses the media flow toward the plasma zone (4) by. A multi-nozzle plasma burner, which is suited for carrying out the method and which is provided with a media nozzle for feeding a media flow to the plasma zone, is characterized in that the media nozzle (7) is designed so that it is focussed toward the plasma zone (4). The focussing is effected by a tapering (6) of the media nozzle (7).
Abstract:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
Abstract:
The present invention relates to a method for manufacturing a preform for optical fibres, wherein deposition of glass-forming compounds on the substrate takes place. The present invention furthermore relates to a method for manufacturing optical fibres, wherein one end of a solid preform is heated, after which an optical fibre is drawn from said heated end.
Abstract:
The present invention provides a TiO2—SiO2 glass in which when used as an optical member for an exposure tool for EUVL, a thermal expansion coefficient is substantially zero at the time of irradiation with high-EUV energy light, and physical properties of a multilayer can be kept over a long period of time by releasing hydrogen from the glass. The present invention relates to a TiO2-containing silica glass having a fictive temperature of 1,100° C. or lower, a hydrogen molecule concentration of 1×1016 molecules/cm3 or more, and a temperature, at which a linear thermal expansion coefficient is 0 ppb/° C., falling within the range of from 40 to 110° C.
Abstract:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.