Abstract:
Methods of remote control of a mobile robot and an intuitive user interface for remotely controlling a mobile robot are provided. Using a point-and-click device (405), the user is able to choose a target location (430) within a heads-up display (400) toward which to move a mobile robot. Additional graphical overlays (410 &and 412) are provided to aid the user in navigating even in systems with asynchronous communication.
Abstract:
A mobile robot, which is guided by a new learning algorithm is presented. The first task for the robot is searching a path like a human being. That is, finding a semi-optimal path to a given goal in a wholly unknown, unpredictable and partly, dynamic large-scale environment. Therefore, it demands high technique of environment modeling through learning. Because the robot should realize its missions within the framework of the task knowledge, there appears a new phenomenon and a Dead Corner theory: genetic algorithm and reinforcement learning algorithm are the basis for the presented theory. Powerful methods are described in the mathematics tool of MDP models. The essential method of the sub-goal method is similar with the Sub-goal method of Options over MDP theory and has been successfully proved. The presented theory is a refined theory of A Learning Classifier System theory. Most of the theory has been proved in a visualization platform of an animation simulator.
Abstract:
The autonomous mobile robot system is provided with a sensor-based and map-based navigation system for navigating in a pipe network. The navigation is based on the classification of pre-existing natural landmarks. The navigation system can compensate for inaccurate robot system's motion control, sensor information, and landmark classification.
Abstract:
Es wird ein Verfahren zur Erkundung eines Robotereinsatzgebietes durch einen autonomen mobilen Roboter beschrieben. Gemäß einem Ausführungsbeispiel umfasst das Verfahren das Starten einer Erkundungsfahrt, wobei der der Roboter während der Erkundungsfahrt Objekte in seiner Umgebung detektiert und detektierte Objekte als Kartendaten in einer Karte speichert, während der Roboter sich durch das Robotereinsatzgebiet bewegt. Während der Erkundungsfahrt führt der Roboter Teilgebietsdetektion basierend auf den gespeicherten Kartendaten durch, wobei zumindest ein Referenzteilgebiet detektiert wird. Anschließend wird geprüft, ob das Referenzteilgebiet vollständig erkundet ist. Der Roboter wiederholt die Teilgebietsdetektion, um das Referenzteilgebiet zu aktualisieren, und prüft erneut, ob das (aktualisierte) Referenzteilgebiet vollständig erkundet ist. Die Erkundung des Referenzteilgebiets wird fortgesetzt, bis dass die Prüfung ergibt, dass das Referenzteilgebiet vollständig erkundet ist. Anschließend wird der Roboter die Erkundungsfahrt in einem weiteren Teilgebiet fortsetzen, sofern ein weiteres Teilgebiet detektiert wurde, wobei das weitere Teilgebiet als Referenzteilgebiet verwendet wird.
Abstract:
A robot is disclosed having the ability to conduct real-time measurements of switchgear as electrical power is conveyed through the switchgear. Embodiments of the robot are capable of opening a portal to access an interior compartment of the switchgear and inserting a probe into the interior. The probe can include a non- contact sensor of any variety. The robot can follow a prescribed path through an enclosure, such as an E-House, to conduct multiple inspections across multiple different switchgear components. The probe can be controlled such as to provide repeatable placement to allow time history comparison of data taken at different times. In one form the robot can be a package connected to the switchgear by a technician, and where the robot is capable of opening the portal and inserting the probe for data taking.
Abstract:
Some embodiments are directed to an unmanned vehicle for transmitting signals. The unmanned vehicle includes a transmitting unit that is configured to transmit a signal towards an object. The unmanned vehicle also includes a control unit that is in communication with at least one companion unmanned vehicle. The control unit is configured to determine a position of the at least one companion unmanned vehicle relative to the unmanned vehicle. The control unit is further configured to control the transmitting element based on at least the position of the at least one unmanned vehicle such that the transmitting element forms a phased-array transmitter with a transmitting element of the at least one companion unnamed vehicle, the phased-array transmitter emitting a transmission beam in a predetermined direction.
Abstract:
A robot cleaner includes an environment information detecting unit configured to obtain environment information regarding at least a portion of a cleaning area, a first communication unit configured to transmit and receive data to and from a different device positioned within the cleaning area, and a control unit configured to generate a control command regarding the different device in order to adjust the obtained environment information.
Abstract:
The present invention relates to a mobile service robot with all-terrain features that allows you to support the implementation of tasks in the area of environmental monitoring. Said robot comprises a coating of aluminium alloys and plastics with good corrosion resistance allowing its use in outdoor environments near saltwater areas, such as estuarine environments. The mechanical platform corresponding to the set constituted by the support structure (14, 15, 16), the transmission blocks (11), the rims of wheels (17), the tires (18) and driving motors (12) and steering (13) presents robustness levels and manoeuvrability suitable for navigation not only on solid grounds but also on sandy or muddy areas. The robot allows the collection of biological and soil samples for later laboratory analysis incorporating for such an interchangeable system comprising an anthropomorphic robotic arm with at least five degrees of freedom, an apparatus for collecting soil samples by drilling and an apparatus for collecting biological samples by drag.
Abstract:
L'invention concerne un robot mobile (100) comportant des moyens de déplacement (110) et d'orientation et des moyens sensoriels comprenant : a. des moyens sensoriels aptes à délivrer une information proprioceptive issue des moyens (110) de déplacement et d'orientation, b. des moyens sensoriels (130, 141, 142, 143, 144, 145, 146, 147) aptes à délivrer une information, dite environnementale, perçue dans l'environnement du robot; caractérisé en ce qu'il comporte des moyens informatiques comprenant: c. une structure neuromimétique comprenant une batterie de cellules de grille idiothétique dont les neurones sont activés par une information proprioceptive et une batterie de cellules de grille allothétique; d. une structure neuromimétique, dite cortex entorhinal, dont chaque neurone correspond à une cellule de lieu.