Abstract:
La présente invention concerne un appareil optique de détection de défauts de forme et/ou d'état de surface et/ou de couleur de pièces à analyser. L'appareil consiste en l'assemblage sur un ou des supports mécaniques (figure1, repère 7) d'une source lumineuse (figure 1 repère n°1), d'une ouverture optique (figure1 repère n°) d'une lentille d'illumination (figure 1 repère n°3), d'une lentille collectrice (figure 1 repère n°4), d'une diaphragme (figure 1 repère 5) et d'un détecteur photosensible (figure 1 repère n°6). La détection d'un défaut est réalisée par la comparaison entre la mesure du spectre et/ou de l'intensité du spectre réfléchie et/ou diffusé par la pièce à analyser et une mesure effectuée précédemment sur une pièce de référence généralement exempte de défaut. L'appareil est capable de la détection de défauts pour des pièces au repos ou en mouvement.
Abstract:
Described herein is a hyperspectral imaging system (500) in which a polarising beam splitter (510), a Wollaston prism (520), an optical system (530), and a plane mirror (540) are arranged on an optical axis (550) of the imaging system (500). An imaging detector (560) is provided on which radiation is focussed by an imaging lens (570). The Wollaston prism (520) is imaged on itself by the optical system (530) and the plane mirror (540) so that translation of the Wollaston prism (520) in a direction parallel to a virtual split plane of the prism effectively provides an optical path length difference that is the same for all points in the object field.
Abstract:
The present invention relates to a Fourier transform deflectometry system 1 and method for the optical inspection of a phase and amplitude object 2 placed in an optical path between a grating 3 and an imaging system 4, at a distance h of said grating 3. The grating 3 forms a contrast-based periodic pattern with spatial frequencies µ 0 , v 0 in, respectively, orthogonal axes x,y in an image plane, and the imaging system 4 comprises an objective 5 and an imaging sensor 6 comprising a plurality of photosensitive elements. According to the method of the invention, a first image of said pattern, distorted by the phase and amplitude object 2, is first captured through the objective 5 by the imaging sensor 6. Then, a Fourier transform of said first image in a spatial frequency domain is calculated, at least one first- or higher-order spectrum of said Fourier transform is selected and shifted in said frequency domain, so as to substantially place it at a central frequency of said Fourier transform, and a reverse Fourier transform of said at least one shifted first- or higher-order spectrum of said Fourier transform is performed so as to obtain a complex function g(x,y)=I(x,y)e iÕp(x,y) , wherein I(x,y) is an intensity and Õ(x,y) a phase linked to optical deflection angles ¸ x , ¸ y in, respectively, the directions of the x and y axes, in the following form: Õ(x,y)=-2Àh(µ 0 tan¸ x +v 0 tan¸ y ).
Abstract translation:本发明涉及一种傅里叶变换折射系统1和方法,用于光栅3和成像系统4之间的光路中放置的相位和幅度物体2的光学检查,光栅3的距离为h。光栅 3在图像平面中分别形成具有空间频率μ0,v 0正交轴x,y的基于对比度的周期性图案,并且成像系统4包括物镜5和成像传感器6,成像传感器6包括多个光敏元件 。 根据本发明的方法,首先通过成像传感器6通过物镜5捕获由相位和幅度物体2失真的所述图案的第一图像。然后,以空间频率对所述第一图像进行傅里叶变换 计算所述傅立叶变换的至少一个一阶或更高阶谱,并且在所述频域中移动所述傅立叶变换的至少一个一阶或更高阶谱,以便将其基本上置于所述傅立叶变换的中心频率处,并且所述傅里叶变换的傅立叶逆变换 (x,y)= I(x,y),其中I(x,y)= I )是一个强度和Õ(x,y)a相,它们分别与x和y轴方向上的光学偏转角x,y y相关联,形式如下:Õ(x,y)= - 2 - h (μ0 tan?x + v 0 tan?y)。
Abstract:
La présente invention concerne un appareil électro-optique de détection de défauts de couleur pour toutes pièces translucides immobile ou en mouvement. L'appareil illustré en figure n°1 consiste en l'assemblage sur un ou des supports mécaniques (figure 1, repère 7), d'une source lumineuse (figure 1, repère 1), d'une protection optique (figure 1, repère 2), d'un support mécanique de guidage de la pièce à analyser (figure 1, repère 3), d'une ouverture optique (figure 1, repère 4), d'une optique collectrice (figure 1, repère 5) et d'un spectromètre (figure 1, repère 6). La détection d'un défaut de couleur de la pièce à ananlyser est réalisé par la comparaison entre le spectre qui est transmis par la pièce à évaluer et celui mesuré précédement sur une pièce de référence.
Abstract:
The present invention relates to a Fourier transform deflectometry system 1 and method for the optical inspection of a phase and amplitude object 2 placed in an optical path between a grating 3 and an imaging system 4, at a distance h of said grating 3. The grating 3 forms a contrast-based periodic pattern with spatial frequencies µ 0 , v 0 in, respectively, orthogonal axes x,y in an image plane, and the imaging system 4 comprises an objective 5 and an imaging sensor 6 comprising a plurality of photosensitive elements. According to the method of the invention, a first image of said pattern, distorted by the phase and amplitude object 2, is first captured through the objective 5 by the imaging sensor 6. Then, a Fourier transform of said first image in a spatial frequency domain is calculated, at least one first- or higher-order spectrum of said Fourier transform is selected and shifted in said frequency domain, so as to substantially place it at a central frequency of said Fourier transform, and a reverse Fourier transform of said at least one shifted first- or higher-order spectrum of said Fourier transform is performed so as to obtain a complex function g(x,y)=I(x,y)e iϕp(x,y) , wherein I(x,y) is an intensity and ϕ(x,y) a phase linked to optical deflection angles θ x , θ y in, respectively, the directions of the x and y axes, in the following form: ϕ(x,y)=-2πh(µ 0 tanθ x +v 0 tanθ y ).
Abstract translation:本发明涉及一种傅立叶变换偏转系统1和方法,用于光学检查放置在光栅3与成像系统4之间的光路中的相位和幅度物体2,距离为所述光栅3的距离。光栅 3分别形成具有空间频率μ0,v 0 in,在图像平面中的正交轴x,y的基于对比度的周期性图案,并且成像系统4包括物镜5和成像传感器6,成像传感器6包括多个感光元件 。 根据本发明的方法,通过成像传感器6首先通过物镜5捕获由相位和幅度对象2失真的所述图案的第一图像。然后,以空间频率对所述第一图像进行傅立叶变换 计算所述傅里叶变换的至少一个第一或更高阶频谱,并在所述频域中移位,以便将其基本上置于所述傅里叶变换的中心频率,并且所述at 执行所述傅里叶变换的至少一个移位的一阶或更高阶光谱,以便获得复函数g(x,y)= I(x,y)eiÕp(x,y),其中I(x,y) )是一个强度,Õ(x,y)分别与x和y轴的方向相关联的光偏转角¸x,¸y的相位,如下形式:Õ(x,y)= - 2 - (μ0 tan x + v 0 tan y y)。
Abstract:
Described herein is an angular position sensing system (100) and method for determining the angular position of a punctual radiating source (130) with respect to a linear sensor element (110). The linear sensor element (110) having a surface (115) comprising a discrete set of pixels. A periodic grating (120) is provided over the surface (115) of the linear sensor element (110) and the output from each pixel in the discrete set of pixels produces a periodic output signal (140), the phase of which is representative of an angle (α) of radiation from the radiating source (130) with respect to the linear sensor element (110). The periodic output signal (140) is processed in the analogue domain to provide quadrature output signals (190, 195).
Abstract:
Described herein is an optical system (100) for reducing the effects of speckle in an interferometer system. The system (100) comprises a laser array (110), intermediate optics (120), a diffuser (130), an integrator (140), and a projection lens system (150) comprising first and second light projection lenses (160, 170) with and an aperture (180) located therebetween. The integrator (140) comprises a uniform output face (190) which can be considered to be a secondary source that is very homogeneous in intensity. The secondary source has been shown to have low speckle contrast whilst retaining high temporal coherence. The low speckle contrast is inversely proportional to the number of laser emitters in the laser array (110) and therefore a vertical cavity surface emitting laser is the preferred laser array as at least 1000 individual emitters can be provided in one device.
Abstract:
Method for conversion of a measurement of an lens (1) comprising the following steps: receiving an experimental lens measurement (EXP) of the lens (1) from a light measurement of the lens (1); determining from the experimental lens measurement (EPX) a digital lens model representing the lens (1) (S1); determining, based on the digital lens model, a converted digital lens measurement (SIM2) representing a converted lens measurement of the lens (1) (S2); determining, based on the experimental lens measurement (EXP1) and the converted digital lens measurement (SIM2), a measurement result (CON) for the lens (1) (S3).