Abstract:
Embodiments of the present invention are provided for improved contact doping and annealing systems and processes. In embodiments, a plasma ion immersion implantation (PIII) process is used for contact doping of nanowires and other nanoelement based thin film devices. According to further embodiments of the present invention, pulsed laser annealing using laser energy at relatively low laser fluences below about 100 mJ/cm 2 (e.g., less than about 50 mJ/cm 2 , e.g., between about 2 and 18 mJ/cm 2 ) is used to anneal nanowire and other nanoelement-based devices on substrates, such as low temperature flexible substrates, e.g., plastic substrates.
Abstract translation:提供本发明的实施例用于改进的接触掺杂和退火系统和工艺。 在实施例中,等离子体离子浸没注入(PIII)工艺用于纳米线和其它基于纳米元件的薄膜器件的接触掺杂。 根据本发明的另外的实施例,使用在低于约100mJ / cm 2(例如小于约50mJ / cm 2)的较低激光能量密度的激光能量进行脉冲激光退火, SUP>,例如约2和18mJ / cm 2之间)用于退火衬底上的纳米线和其它基于纳米元件的器件,例如低温柔性衬底,例如塑料衬底。
Abstract:
The present invention relates to nanostructured materials (including nanowires) for use in batteries. Exemplary materials include carbon-comprising, Si-based nanostructures, nanostructured materials disposed on carbon-based substrates, and nanostructures comprising nanoscale scaffolds. The present invention also provides methods of preparing battery electrodes, and batteries, using the nanostructured materials.
Abstract:
The present invention relates to methods of forming substrate elements, including semiconductor elements such as nanowires, transistors and other structures, as well as the elements formed by such methods.
Abstract:
The present invention relates to methods of forming substrate elements, including semiconductor elements such as nanowires, transistors and other structures, as well as the elements formed by such methods.
Abstract:
A phased array system having antennas, non-variable phase shifters, and switches. The non-variable phase shifters are configured to be coupled selectively to a transmitter or a receiver. A non-variable phase shifter is configured to shift a phase of an electromagnetic energy wave that traverses the non-variable phase shifter by a fraction of a period of the electromagnetic energy wave for a range of frequencies of the electromagnetic energy wave. At least one of the fraction and the range associated with the non-variable phase shifter is different from at least one of the fraction and the range associated with other non-variable phase shifters. The switches are configured to couple selectively the antennas to the non-variable phase shifters, the transmitter, or the receiver.
Abstract:
Methods, systems, and apparatuses for annealing semiconductor nanowires and for fabricating electrical devices are provided. Nanowires are deposited on a substrate. A plurality of electrodes is formed in electrical contact with the nanowires. The nanowires are doped. A polarized laser beam is applied to the nanowires to anneal at least a portion of the nanowires. The laser beam may be polarized in various ways to modify absorption of radiation of the laser beam by the nanowires. For example, the laser beam may be polarized in a direction substantially parallel or perpendicular to a direction of the nanowires.
Abstract:
The present invention is directed to thin film transistors using nanowires (or other nanostructures such as nanoribbons, nanotubes and the like) incorporated in and/or disposed proximal to conductive polymer layer(s), and production scalable methods to produce such transistors. In particular, a composite material comprising a conductive polymeric material such as polyaniline (PANI) or polypyrrole (PPY) and one or more nanowires incorporated therein is disclosed. Several nanowire-TFT fabrication methods are also provided which in one exemplary embodiment includes providing a device substrate; deposing a first conductive polymer material layer on the device substrate; defining one or more gate contact regions in the conductive polymer layer; deposing a plurality of nanowires over the conductive polymer layer at a sufficient density of nanowires to achieve an operational current level; deposing a second conductive polymer material layer on the plurality of nanowires; and forming source and drain contact regions in the second conductive polymer material layer to thereby provide electrical connectivity to the plurality of nanowires, whereby the nanowires form a channel having a length between respective ones on the source and drain regions.
Abstract:
The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
Abstract:
Apparatus and methods for optical detection with improved read speed and/or signal-to-noise ratio. These apparatus and methods may involve among others moving a sample substrate (108) while simultaneously detecting light transmitted from one or more sample sites (110) on the substrate (108) by sequentially tracking the sample sites (110) as they move. A stage (101), movable in a first direction, supports the substrate (108). A detector (118) detects light emanating from an examination region (102) delimited by a detection initiation position (106a) and a detection termination position (106b). An optical relay structure (122) transmits light from the examination region (102) to the detector (118). A scanning mechanism (120) simultaneously moves the optical relay structure (122) and the substrate in the first direction. The optical relay structure (122) tracks the substrate (108) between the detection initiation position (106a) and the detection termination position (106b).