Abstract:
본 발명은 슈퍼커패시터용 전극 및 이의 제조방법에 관한 것으로 전도성 전극기판 및 전도성 전극의 적어도 일면에 금속산화물과 보조전해질을 포함하는 금속산화물 용액이 전착된 금속산화물층을 포함함으로써, 종래에 비하여 공정단계를 줄일 수 있으며 전극의 비축전용량을 향상시킬 수 있을 뿐만 아니라 금속산화물의 전착시간을 줄일 수 있다.
Abstract:
서지흡수장치의제조방법이개시된다. 서지흡수장치를제조하기위해, 세라믹튜브의내부관통공간이노출되는단부면에도금층을형성한후 브레이징링을이용하여도금층에밀봉전극을부착할수 있다. 이때, 도금층은세라믹튜브의단부면을식각한후 무전해도금촉매층을형성하고, 이어서세라믹튜브의단부면에무전해도금의방법으로금속층을형성한후 이를열처리함으로써형성될수 있다.
Abstract:
The present invention relates to a method of forming a three-dimensional copper nanostructure which includes steps of: manufacturing a test piece in a structure including an SiO2 mask; etching a plasma inclined in multiple directions to form a three-dimensional etching structure layer on the test piece; coating to enable metal to be filled in the portion in which the plasma inclined in multiple directions is etched; removing an overcoated portion and the SiO2 mask from the metal; and removing portions besides the metal which is the three-dimensional etching structure layer from the surface of the test piece. According to the present invention, to overcome a limitation of a focused ion beam etching (FIBE) method for manufacturing a copper nanostructure, a high-density plasma is used for etching the plasma inclined in multiple directions on a large test piece arranged on a faraday box, a copper film is formed on a gap of the etched test piece, and the overcoated copper film and the SiO2 mask are removed, thereby forming uniform arrays of a copper nanostructure, and being able to randomly control a diameter of the copper nanostructure for high applicability.
Abstract:
본 발명은 금속산화물-그래핀 나노복합체의 제조방법 및 금속산화물-그래핀 나노복합체를 이용한 전극 제조방법에 관한 것으로, 본 발명은, 나노복합체의 합성 재료를 준비하는 단계; 상기 합성 재료를 전처리하여 그래핀 플레이크(graphene flake)를 형성하는 단계; 및 상기 전처리한 합성 재료를 수열합성하는 단계를 포함한다. 본 발명에 의하면, 기존의 산화제와 환원제, 고온의 열을 이용한 그래핀 방법에서 벗어나 계면활성제만을 이용하여 한 번의 공정(one-step)으로 값싼 그래파이트로부터 금속산화물-그래핀 나노복합체를 제조 가능하다는 장점을 가지며, 이는 공정단계를 개선함과 동시에 공정비용의 경제성을 향상시킬 수 있는 효과가 있다. 또한, 전극 제조시 기존의 활물질, 도전재, 바인더를 사용하는 방법에서 벗어나 그래핀으로 인한 낮은 전기저항을 그대로 살려 도전재를 첨가하지 않는 공정을 통해 효율성을 가져올 수 있는 효과가 있다. 또한, 순도가 높은 그래핀을 단시간에 제조함과 동시에 에너지 저장장치에 응용 가능한 다양한 금속산화물 활물질을 단성분계, 이성분계, 다성분계 금속산화물을 한 번의 공정으로 제조가능하며, 원하는 중량비, 필요로 하는 산화물{산화코발트(CoO), 사산화삼코발트(Co3O4), 수산화코발트[Co(OH) 2 ] 등}을 손쉽게 제조할 수 있어 매우 넓은 응용범위(이차전지 및 가스 센서 등)를 기대할 수 있다.
Abstract:
The present invention relates to a method for fabricating a slanted copper nanorod. The method for fabricating a slanted copper nanorod includes the following steps: fabricating a sample having a structure including an etch stop layer on a wafer; etching the sample by positioning the sample in a slanted form; forming a copper film on the slanted sample by plating; removing an excessively plated part of the copper film; and removing a poly silicon except for copper from a surface of the sample. According to the present invention, the slanted copper nanorod can be fabricated in a larger size as compared with an existing method so that a nanostructure having superior processing yield and a uniform array can be formed. An angle and a diameter of a copper nanorod can be freely controlled so that applicability of the copper nanorod is very high. The present invention is applicable to a process of manufacturing various devices such as semiconductor devices, micro electro mechanical systems (MEMS), optical devices, gas detectors, and display devices.
Abstract:
그라파이트 상에 금속 산화물층을 전기화학적으로 전착하는 단계를 포함하는 슈퍼커패시터용 금속 산화물/그라파이트 전극의 제조방법에 관한 것으로서, 본 발명에 따르면 종래의 도전제와 바인더를 사용하여 전극을 제조하는 방법과 달리 그라파이트에 직접 금속 산화물을 전착하여 금속산화물/그라파이트 복합재 전극을 제조하고, 이를 전극으로 그대로 사용할 수 있기 때문에 제조 공정이 간단하고, 동시에 공정비용을 절감 효과를 가져온다. 또한, 그라파이트 전극 위에 전착되는 금속 산화물의 종류, 크기와 두께를 다양하게 조절하여 성능이 보다 향상된 전극의 제조가 가능하여, 슈퍼커패시터와 이차전지 등 다양한 분야에 활용할 수 있다.