Abstract:
A condensation management manifold includes a first portion having a first elongated channel comprising a first condensate flow channel. A second portion of the manifold has second elongated channel comprising a second condensate flow channel. The second portion is configured to nest at least partially within the first portion such that a first surface of a flexible condensate management film is fluidically coupled to the first flow channel and an oppositely oriented second surface of the condensate management film is fluidically coupled to the second flow channel.
Abstract:
A fluid control film is provided that includes fluid control channels extending along a channel longitudinal axis. Each of the fluid control channels has a surface and is configured to allow capillary movement of liquid in the channels. The fluid control film further includes a hydrophilic surface treatment covalently bonded to at least a portion of the surface of the fluid control channels. The fluid control film exhibits a capillary rise percent recovery of at least ten percent. Typically, the hydrophilic surface treatment includes functional groups selected from a non-zwitterionic sulfonate, a non-zwitterionic carboxylate, a zwitterionic sulfonate, a zwitterionic carboxylate, a zwitterionic phosphate, a zwitterionic phosphonic acid, and/or a zwitterionic phosphonate. A process for forming a fluid control film is also provided. Further, a process for cleaning a structured surface is provided, including providing a structured surface and a hydrophilic surface treatment covalently bonded to at least a portion of the structured surface, and soiling the structured surface with a material. The process also includes removing the material by at least one of submerging the structured surface in an aqueous fluid, rinsing the structured surface with an aqueous fluid, condensing an aqueous fluid on the structure surface, or wiping the structured surface with a cleaning implement.
Abstract:
The disclosure provides microstructured articles and methods useful for detecting an analyte in a sample. The articles include microwell arrays. The articles can be used with an optical system component in methods to detect or characterize an analyte.
Abstract:
The present disclosure describes methods for concentrating microorganisms with concentration agents in a sampling device and the sampling device described herein. More specifically, methods for concentrating microorganisms from large volume samples with concentration agents in a sampling device can provide for rapid, low cost, simple (involving no complex equipment or procedures), and/or effective processes under a variety of conditions.
Abstract:
Articles are provided, including a porous elastomeric material having a first major surface and an elastomeric material integrated into the first major surface of the porous elastomeric material. The elastomeric material coating the first major surface, a first portion of the elastomeric material being disposed within a plurality of pores defined by the first major surface of the porous elastomeric material and extending into the plurality of pores to a depth of at least 300 micrometers (μm), wherein the first portion of the elastomeric material provides fluid communication through the porous elastomeric material via holes formed in the elastomeric material extending into the thickness of the porous elastomeric material through the voids of the pores of the elastomeric material. A method of making an article is also provided.
Abstract:
Systems and methods for concentrating a sample and detecting an analyte of interest using a separation liquid. The system can include a sample detection container that can include a microcavity. The microcavity can include a concentrate of a sample resulting from centrifugation of the sample. The container can further include a separation liquid located between the microcavity and a supernatant of the sample located outside of the microcavity. The separation liquid can have a density greater than that of the supernatant of the sample, and an interfacial tension with the supernatant of at least 0.05 N/m. The separation liquid can be non-toxic and inert. The method can include adding the separation liquid to the sample detection container, after centrifuging the sample detection container, to displace the supernatant located outside of the microcavity from the microcavity.
Abstract:
The present invention provides methods to concentrate cells onto microparticles, to concentrate the microparticles, and to detect the cells. The present invention also includes unitary sample preparation and detection devices to be used in accordance with the methods.
Abstract:
A biological sterilization indicator, system, and methods of determining the effectiveness of a sterilization process. The biological sterilization indicator can include a locus of spores, a reservoir containing a liquid, and a sterilant path positioned to provide fluid communication between ambience and the locus of spores. The reservoir can have a closed state in which the reservoir is not in fluid communication with the locus of spores and an open state in which the reservoir is in fluid communication with the locus of spores. The biological sterilization indicator system can include the biological sterilization indicator and a detection device adapted to be coupled to the biological sterilization indicator. In some embodiments, the method can include assaying the spores for a detectable change in a characteristic, and detecting substantially all of the detectable change.
Abstract:
The present disclosure provides a light control film that is capable of transmitting light, or allowing a viewer to observe information, only within a viewing region centered around the normal (perpendicular line) to a surface. The light control film generally blocks information or light outside of this viewing region, and provides security in all directions including right-and-left and up-and-down of the film. The light control film includes a plurality of light-transmissive cavities that are surrounded by a light absorbing material, such that each of the plurality of cavities is optically isolated from adjacent cavities. Each of the light-transmissive cavities effectively block light which enters the cavity outside of a viewing (that is, cutoff) angle.
Abstract:
The present disclosure provides fluidic devices. A fluidic device includes a) a first bondable polymeric layer having a first major surface that is substantially planar; b) a second polymeric layer having a first major surface that is substantially planar; and c) a hydrophilic mask material disposed on a first portion of the first major surface of the first bondable polymeric layer. A surface of the hydrophilic mask material exhibits an advancing contact angle with water of less than 90 degrees. A second portion of the first major surface of the first bondable polymeric layer is bonded to a first portion of the first major surface of the second polymeric layer. The hydrophilic mask material and a second portion of the first major surface of the second polymeric layer are in direct contact with each other at at least one point. An open volume is defined by interstitial space located between the hydrophilic mask material and the second portion of the first major surface of the second polymeric layer. The open volume comprises two or more openings and at least one of the openings is located at an edge of the first bondable polymeric layer. The fluidic devices can be formed to have small volumes for use as precision fluidic devices, such as blood glucose testing strips.