Abstract:
A heat-debondable adhesive article having two opposing sides is provided that includes a shape-memory polymer sheet in its temporary strained shape that includes a plurality of slits therein and a first adhesive on one opposing side of the polymer sheet and a second adhesive on the other opposing side of the polymer sheet. The provided article, optionally, includes a first substrate in contact with the first adhesive and a second substrate in contact with the second adhesive. The article can be debonded by heating the article to a temperature equal to or greater than a transition temperature for the shape-memory polymer sheet.
Abstract:
An article comprising a first component having a first electrically conductive surface and a second component having a second surface. An adhesive composition comprising a cured polymerizable ionic liquid is disposed between the first electrically conductive surface and second surface and joins the first component to the second component. The polymerizable ionic liquid comprises an acid functional monomer and the conjugate acid of an imidazole compound. The effort required to separate the first component from the second component, as measured by work of adhesion per surface area, is reduced by application of a DC electric potential across the adhesive composition.
Abstract:
Curable adhesive compositions are provided that can be cured using ultraviolet or visible light radiation. These curable adhesive compositions, which contain a curable (meth)acrylate copolymer, have a creep compliance that is less than 5(10−4) inverse Pascals at 25° C., a creep compliance that is greater than 1(10−3) inverse Pascals at 70° C., and a shear storage modulus greater than 40 kiloPascals when measured at 25° C. at a frequency of 1 radian/second.
Abstract:
The present invention is an assembly layer for a flexible device. The assembly layer is derived from precursors that include about 0 to about 50 wt % C1-C9 alkyl(meth)acrylate, about 40 to about 99 wt % C10-C24 (meth)acrylate, about 0 to about 30 wt % hydroxyl(meth)acrylate, about 0 to about 10 wt % of a non-hydroxy functional polar monomer, and about 0 to about 5 wt % crosslinker.
Abstract:
A core-sheath filament having a) a core that is a thermally conductive pressure-sensitive adhesive particles and b) a non-tacky, thermoplastic sheath is provided. The thermally conductive pressure-sensitive adhesive in the core includes a (meth)acrylate-based polymeric material and thermally conductive particles. Additionally, methods of making the core-sheath filament and methods of using the core-sheath filament to print a thermally conductive pressure-sensitive adhesive are described.
Abstract:
An adhesive article including: a flexible backing; a first cushion layer permanently bonded to a first surface of the flexible backing, wherein the first cushion layer: has an average thickness of at least 10 micrometers; and includes an acrylate pressure-sensitive adhesive having a Fox Tg of up to −30° C., wherein the acrylate pressure-sensitive adhesive includes a (meth)acrylate copolymer; and a first continuous shell layer adjacent the first cushion layer, wherein: the first continuous shell layer has an average thickness of up to 25 micrometers; the ratio of the first cushion layer average thickness to the first shell layer average thickness is at least 2:1; the first continuous shell layer includes an adhesive having a Fox Tg of −20° C. to +50° C.; and the first continuous shell layer adhesive includes a copolymer having a weight average molecular weight of at least 100,000 Daltons.
Abstract:
Optically clear adhesive compositions contain an elastomeric polymer and a low molecular weight polymeric additive. The elastomeric polymer and the low molecular weight polymeric additive form an acid-base interaction. The refractive index of the adhesive composition is higher than the refractive index of the elastomeric polymer. The adhesive composition may also contain additional domains of liquids, polymers, additives or particles that have a higher refractive index than the elastomeric polymer.
Abstract:
An adhesive article including: a flexible backing; a first cushion layer permanently bonded to a first surface of the flexible backing, wherein the first cushion layer: has an average thickness of at least 10 micrometers; and includes an acrylate pressure-sensitive adhesive having a Fox Tg of up to −30° C., wherein the acrylate pressure-sensitive adhesive includes a (meth)acrylate copolymer; and a first continuous shell layer adjacent the first cushion layer, wherein: the first continuous shell layer has an average thickness of up to 25 micrometers; the ratio of the first cushion layer average thickness to the first shell layer average thickness is at least 2:1; the first continuous shell layer includes an adhesive having a Fox Tg of −20° C. to +50° C.; and the first continuous shell layer adhesive includes a copolymer having a weight average molecular weight of at least 100,000 Daltons.
Abstract:
An adhesive article including: a flexible backing; a first cushion layer permanently bonded to a first surface of the flexible backing, wherein the first cushion layer: has an average thickness of at least 10 micrometers; and includes an acrylate pressure-sensitive adhesive having a Fox Tg of up to −30° C., wherein the acrylate pressure-sensitive adhesive includes a (meth)acrylate copolymer; and a first discontinuous shell layer adjacent the first cushion layer, wherein: the first discontinuous shell layer has an average thickness of up to 25 micrometers; the ratio of the first cushion layer average thickness to the first shell layer average thickness is at least 2:1; the first discontinuous shell layer includes an adhesive having a Fox Tg of +10° C. to +50° C.; and the first discontinuous shell layer adhesive includes a copolymer having a weight average molecular weight of at least 100,000 Daltons.
Abstract:
Curable adhesive compositions are provided that can be cured using ultraviolet or visible light radiation. These curable adhesive compositions, which contain a curable (meth)acrylate copolymer, have a creep compliance that is less than 5(10−4) inverse Pascals at 25° C., a creep compliance that is greater than 1(10−3) inverse Pascals at 70° C., and a shear storage modulus greater than 40 kiloPascals when measured at 25° C. at a frequency of 1 radian/second.