Abstract:
A reticle (130) provides an image pattern and compensates for a lens error in a photolithographic system. The reticle is structurally modified using image displacement data indicative of the lens error. The reticle can be structurally modified by adjusting the configuration (or layout) of radiation-transmitting regions (132, 134) for instance by adjusting a chrome pattern on the top surface of a quartz base. Alternatively, the reticle can be structurally modified by adjusting the curvature of the reticle, for instance by providing a chrome pattern on the top surface of a quartz base and grinding away portions of the bottom surface of the quartz base. The image displacement data may also vary as a function of lens heating so that the reticle compensates for lens heating associated with the reticle pattern.
Abstract:
A nitrogen implanted region formed substantially below and substantially adjacent to a source/drain region of an IGFET forms a liner to retard the diffusion of the source/drain dopant atoms during a subsequent heat treatment operation such as an annealing step. The nitrogen liner may be formed by implantation of nitrogen to a given depth before the implantation of source/drain dopant to a lesser depth. Nitrogen may also be introduced into regions of the IGFET channel region beneath the gate electrode for retarding subsequent lateral diffusion of the source/drain dopant. Such nitrogen introduction may be accomplished using one or more angled implantation steps, or may be accomplished by annealing an implanted nitrogen layer formed using a perpendicular implant aligned to the gate electrode. The liner may be formed on the drain side of the IGFET or on both source and drain side, and may be formed under a lightly-doped region or under a heavily-doped region of the drain and/or source. Such a liner is particularly advantageous for boron-doped source/drain regions, and may be combined with N-channel IGFETs formed without such liners.
Abstract:
Dopant atoms have coefficients of diffusion that vary due to implant damage. Damaged regions are selected and created by implanting silicon atoms into a silicon substrate prior to formation of a gate electrode. The silicon atoms act as a getter for attracting selected dopants that are trapped in the silicon substrate. Dopants are implanted in the vicinity of the damaged regions and diffused by transient-enhanced diffusion (TED) into the damaged regions by thermal cycling to accumulate dopant atoms. Transient-enhanced diffusion improves the doping of a substrate by enhancing the diffusion of dopants at relatively low anneal temperatures. Dopant accumulation sets particular selected electrical properties without placing an excessive amount of dopant in regions adjacent to junctions for purposes including threshold control for a field device, threshold setting for a transistor, and prevention of device punchthrough.
Abstract:
A reticle (130) provides an image pattern and compensates for a lens error in a photolithographic system. The reticle is structurally modified using image displacement data indicative of the lens error. The reticle can be structurally modified by adjusting the configuration (or layout) of radiation-transmitting regions (132, 134) for instance by adjusting a chrome pattern on the top surface of a quartz base. Alternatively, the reticle can be structurally modified by adjusting the curvature of the reticle, for instance by providing a chrome pattern on the top surface of a quartz base and grinding away portions of the bottom surface of the quartz base. The image displacement data may also vary as a function of lens heating so that the reticle compensates for lens heating associated with the reticle pattern.
Abstract:
A semiconductor process for producing two gate oxide thicknesses within an integrated circuit in which a semiconductor substrate having a first region and a second region is provided. The first region and the second region are laterally displaced with respect to one another. A nitrogen species impurity distribution is then introduced into the first region of the semiconductor substrate. Thereafter, a gate dielectric layer is grown on an upper surface of the semiconductor substrate. The gate dielectric has a first thickness over the first region of the semiconductor substrate and a second thickness over the second region of the semiconductor substrate. The first thickness is less than the second thickness. In a CMOS embodiment of the present invention, the first region of the semiconductor substrate comprises p-type silicon while the second substrate region comprises n-type silicon. Preferably, the step of introducing the nitrogen species impurity distribution into the semiconductor substrate is accomplished by thermally oxidizing the first substrate region in a nitrogen bearing ambient. In a presently preferred embodiment, the nitrogen bearing ambient includes N2O, NH3, O2 and HCl in an approximate ratio of 60:30:7:3. In alternative embodiments the nitrogen bearing ambient includes NO, O2 and HCl in an approximate ratio of 90:7:3 or N2O, O2 and HCl in a approximate ratio of 90:7:3. The introduction of the nitrogen species impurity into first substrate region (102) may alternatively be accomplished with rapid thermal anneal processing.
Abstract:
A method of fabricating a buried local interconnect (190) in a substrate (20) and an integrated circuit (10) incorporating the same are provided. The method includes the steps forming a trench (240) in the substrate (20) and forming a first insulating layer (80) in the trench (240). A conductor layer (250) is formed on the first insulating layer (80). A portion of the conductor layer (250) is removed to define a local interconnect layer (190) and a second insulating layer (270) is formed in the trench (240) covering the local interconnect layer (190). The method provides for a local interconnect layer (190) buried beneath a dielectric layer of an integrated circuit, such as a shallow trench isolation layer. Areas of a substrate above the silicon-silicon dioxide interface formerly reserved for local interconnect layers in conventional processing may now be used for additional conductor lines.
Abstract:
A semiconductor device has gate with a first material having a first dielectric constant adjacent the semiconductor substrate and a second material having a second dielectric constant adjacent the semiconductor substrate. A conductor, such as polysilicon, is then placed on the gate so that the first and second materials are sandwiched between the conductor and the semiconductor substrate. Since the dielectric constants of the two materials are different, the gate acts like a gate having a single dielectric with at least two thicknesses. One dielectric constant is larger than the other dielectric constant. The higher dielectric constant material is comprised of a single spacer located within the gate at the sidewall nearest the drain of the semiconductor device. A layer of silicon dioxide is positioned on the semiconductor substrate between the spacer and the other sidewall of the gate. The thickness of the spacers can be adjusted to optimize the performance of the semiconductor device.
Abstract:
A method of making NMOS and PMOS devices with reduced masking steps is disclosed. The method includes providing a semiconductor substrate with a first active region of first conductivity type and a second active region of second conductivity type, forming a gate material over the first and second active regions, forming a first masking layer over the gate material, etching the gate material using the first masking layer as an etch mask to form a first gate over the first active region and a second gate over the second active region, implanting a dopant of second conductivity type into the first and second active regions using the first masking layer as an implant mask, forming a second masking layer that covers the first active region and includes an opening above the second active region, and implanting a dopant of first conductivity type into the second active region using the first and second masking layers as an implant mask. Advantageously, the dopant of first conductivity type counterdopes the dopant of second conductivity type in the second active region, thereby providing source and drain regions of second conductivity type in the first active region and source and drain regions of first conductivity type in the second active region with a single masking step and without subjecting either gate to dopants of first and second conductivity type.
Abstract:
A semiconductor process for producing two gate oxide thicknesses within an integrated circuit in which a semiconductor substrate having a first region and a second region is provided. The first region and the second region are laterally displaced with respect to one another. A nitrogen species impurity distribution is then introduced into the first region of the semiconductor substrate. Thereafter, a gate dielectric layer is grown on an upper surface of the semiconductor substrate. The gate dielectric has a first thickness over the first region of the semiconductor substrate and a second thickness over the second region of the semiconductor substrate. The first thickness is less than the second thickness. In a CMOS embodiment of the present invention, the first region of the semiconductor substrate comprises p-type silicon while the second substrate region comprises n-type silicon. Preferably, the step of introducing the nitrogen species impurity distribution into the semiconductor substrate is accomplished by thermally oxidizing the first substrate region in a nitrogen bearing ambient. In a presently preferred embodiment, the nitrogen bearing ambient includes N2O, NH3, O2 and HCl in an approximate ratio of 60:30:7:3. In alternative embodiments the nitrogen bearing ambient includes NO, O2 and HCl in an approximate ratio of 90:7:3 or N2O, O2 and HCl in a approximate ratio of 90:7:3. The introduction of the nitrogen species impurity into first substrate region (102) may alternatively be accomplished with rapid thermal anneal processing.