Abstract:
A methodology for determining a periodicity of a neighbor cell search for a cellular mobile device is disclosed. The neighbor cell searches may be conducted during discontinuous reception (DRX) paging cycles. However, instead of performing a neighbor cell search during each DRX paging cycle, the period for performing a neighbor cell search may be adaptively determined. Various metrics may be used in determining the periodicity for neighbor cell searches. In various embodiments, two or more metrics may be utilized in combination to determine the neighbor cell search periodicity.
Abstract:
A method for adaptively disabling receiver diversity is provided. The method can include a wireless communication device determining an active data traffic pattern; defining a threshold channel quality metric based at least in part on a threshold channel quality needed to support a threshold quality of service for the active data traffic pattern; comparing a measured channel quality to the threshold channel quality metric; and disabling receiver diversity in an instance in which the measured channel quality metric satisfies the threshold channel quality metric.
Abstract:
Methods and apparatus for network-based detection and mitigation of hybrid client device reception outage events. For example, in one embodiment, a cellular device uses a single-radio solution to support circuit-switched calls on a CDMA 1X network and packet-switched calls on LTE. Periodically, the cellular device tunes away from LTE and monitors CDMA 1X activity, and vice versa. During these tuned-away periods, the network adjusts operation to mitigate adverse effects (e.g., underutilization of radio resources, synchronization loss, etc.).
Abstract:
A methodology for determining a periodicity of a neighbor cell search for a cellular mobile device is disclosed. The neighbor cell searches may be conducted during discontinuous reception (DRX) paging cycles. However, instead of performing a neighbor cell search during each DRX paging cycle, the period for performing a neighbor cell search may be adaptively determined. Various metrics may be used in determining the periodicity for neighbor cell searches. In various embodiments, two or more metrics may be utilized in combination to determine the neighbor cell search periodicity.
Abstract:
Methods and apparatus for adaptively adjusting receiver operation during non-continuous (e.g., discontinuous) reception. In one exemplary embodiment, a user device such as a User Equipment (UE) adaptively adjusts its reception mode based on a determined actual error. The reception mode is selected so as to improve reception performance, while still minimizing overall power consumption.
Abstract:
Methods and apparatus for managing radio measurements during discontinuous reception. In one exemplary embodiment, the distribution of Long Term Evolution (LTE) DRX measurements is staggered or distributed across multiple DRX cycles (which may be contiguous or non-contiguous) so as to reduce the transceiver activity and power consumption. The exemplary UE in one implementation only performs a subset of measurements during each DRX cycle. By staggering or distributing cell measurements over multiple DRX cycles, the UE can improve power consumption, while still conforming to measurement requirements.
Abstract:
Adaptive generation of channel quality indicators based on a current communication scenario. A plurality of sets of channel quality indicator information may be stored for each of a plurality of UE communication scenarios. The information may be usable in generating a channel quality indicator. During operation of the UE, a current communication scenario of the UE may be determined. A first set of channel quality indicator information may be selected based on the determined current communication scenario being experienced by the UE. At least one channel quality indicator may be determined based on the selected first set of channel quality indicator information. Finally, the channel quality indicator may be provided to a base station.
Abstract:
A method for reducing power consumption in connected mode discontinuous reception is disclosed. The method can include a wireless communication device sending a transmission for a pending HARQ retransmission process and receiving an ACK for the transmission. The method can further include the wireless communication device determining a subset of remaining uplink transmission opportunities in the pending HARQ retransmission process to monitor for an uplink grant in response to receiving the ACK and monitoring the subset of remaining uplink transmission opportunities for an uplink grant. The method can additionally include the wireless communication device entering a sleep state for any uplink transmission opportunities remaining in the pending HARQ retransmission process after monitoring the subset of remaining uplink transmission opportunities in an instance in which an uplink grant for the pending HARQ retransmission process is not received for any of the subset of remaining uplink transmission opportunities.
Abstract:
Aspects of the present invention provide apparatuses and methods for adaptive channel state feedback (CSF) estimation techniques. Downlink transmissions can be received at a mobile device. The downlink transmissions can be received after the mobile device has entered a power saving mode of operation. The downlink transmission received can be a discontinuous downlink subframe and can include one or more pilot symbols. A channel variation factor of the transmission channel can be determined based on the received downlink transmission. Based on the amount of variation of the transmission channel, either an earlier-received or a later-received pilot symbol can be used for CSF estimation. Further, either higher or lower weighted filter coefficients can be selected for use in CSF estimation based on the amount of variation of the transmission channel.
Abstract:
Outer loop link adaptation for device resumption. A user equipment (UE) and base station (BS) may be in communication in a first network (e.g., an LTE network). Communication between the UE and the BS may be interrupted, e.g., due to a long fading environment, the UE tuning away to a second network (e.g., a CDMA network). Accordingly, the measured error rate may increase dramatically. After resumption from the interruption, a negative offset may be applied to a reported SINR value from the UE due to the previous increase in error rate. Upon improvement in the error rate, a larger, positive offset adjustment may be added to the negative offset, allowing the estimated SINR to return to reported SINR more quickly. Additionally, the error rate estimation may be adjusted to converge to a more recently measured more quickly by decreasing a feedback filter coefficient.