Abstract:
A semiconductor package includes a processor die (e.g., an SoC) and one or more memory die (e.g., DRAM) coupled to a ball grid array (BGA) substrate. The processor die and the memory die are coupled to opposite sides of the BGA substrate using terminals (e.g., solder balls). The package may be coupled to a printed circuit board (PCB) using one or more terminals positioned around the perimeter of the processor die. The PCB may include a recess with at least part of the processor die being positioned in the recess. Positioning at least part of the processor die in the recess reduces the overall height of the semiconductor package assembly. A voltage regulator may also be coupled to the BGA substrate on the same side as the processor die with at least part of the voltage regulator being positioned in the recess a few millimeters from the processor die.
Abstract:
Multiple component package structures are described in which an interposer chiplet is integrated to provide fine routing between components. In an embodiment, the interposer chiplet and a plurality of conductive vias are encapsulated in an encapsulation layer. A first plurality of terminals of the first and second components may be in electrical connection with the plurality of conductive pillars and a second plurality of terminals of first and second components may be in electrical connection with the interposer chiplet.
Abstract:
In some embodiments, a system may include an integrated circuit. The integrated circuit may include a substrate including a first surface, a second surface substantially opposite of the first surface, and a first set of electrical conductors coupled to the first surface. The first set of electrical conductors may function to electrically connect the integrated circuit to a circuit board. The integrated circuit may include a semiconductor die coupled to the second surface of the substrate using a second set of electrical conductors. The integrated circuit may include a passive device dimensioned to be integrated with the integrated circuit. The passive device may be positioned between the second surface and at least one of the first set of electrical conductors. The die may be electrically connected to a second side of the passive device. A first side of the passive device may be available to be electrically connected to a second device.
Abstract:
In some embodiments, a method and/or a system may include an integrated circuit. The integrated circuit may include a semiconductor die. The integrated circuit may include a plurality of wiring layers. At least one metal-insulator-metal (MIM) capacitor may be formed within the plurality of wiring layers. The integrated circuit may include a circuit. The circuit may include at least an inductor and a voltage regulator which, with the MIM capacitor, forms a voltage regulator for the semiconductor die. The circuit may be coupled substantially below at least a portion of the MIM capacitor in the plurality of layers. The circuit may be electrically coupled to the capacitor through the plurality of wiring layers. The integrated circuit may include a plurality of electrical connectors, the plurality of electrical connectors coupled to the second surface at points separate from an area of the second surface that is occupied by the circuit.
Abstract:
Sensor packages and manners of formation are described. In an embodiment, a sensor package includes a supporting die characterized by a recess area and a support anchor protruding above the recess area. A sensor die is bonded to the support anchor such that an air gap exists between the sensor die and the recess area. The sensor die includes a sensor positioned directly above the air gap.
Abstract:
A semiconductor device package is described that includes a power consuming device (such as an SOC device). The power consuming device may include one or more current consuming elements. A passive device may be coupled to the power consuming device. The passive device may include a plurality of passive elements formed on a semiconductor substrate. The passive elements may be arranged in an array of structures on the semiconductor substrate. The power consuming device and the passive device may be coupled using one or more terminals. The passive device and power consuming device coupling may be configured in such a way that the power consuming device determines functionally the way the passive device elements will be used.
Abstract:
Packages and methods of formation are described. In an embodiment, a system in package (SiP) includes first and second redistribution layers (RDLs), stacked die between the first and second RDLs, and conductive pillars extending between the RDLs. A molding compound may encapsulate the stacked die and conductive pillars between the first and second RDLs.
Abstract:
In some embodiments, a system may include an integrated circuit. The integrated circuit may include a substrate including a first surface, a second surface substantially opposite of the first surface, and a first set of electrical conductors coupled to the first surface. The first set of electrical conductors may function to electrically connect the integrated circuit to a circuit board. The integrated circuit may include a semiconductor die coupled to the second surface of the substrate using a second set of electrical conductors. The integrated circuit may include a passive device dimensioned to be integrated with the integrated circuit. The passive device may be positioned between the second surface and at least one of the first set of electrical conductors. The die may be electrically connected to a second side of the passive device. A first side of the passive device may be available to be electrically connected to a second device.
Abstract:
Vertically stacked system in package structures are described. In an embodiment, a package includes a first level molding and fan out structure, a third level molding and fan out structure, and a second level molding and fan out structure between the first and third levels. The second level molding and fan out structure includes back-to-back facing die, with a front surface of each die bonded to a redistribution layer.
Abstract:
Packages and methods of formation are described. In an embodiment, a system in package (SiP) includes first and second redistribution layers (RDLs), and a plurality of die attached to the front and back side of the first RDL. The first and second RDLs are coupled together with a plurality of conductive pillars extending from the back side of the first RDL to a front side of the second RDL.