Abstract:
A Node-B/base station comprises a plurality of antennas (28I - 28M) for receiving user signals and a path searcher. The path searcher comprises a set of correlators (42-1, 42-2 … 42-P). Each correlator of the set of correlators correlates an inputted user code with an inputted antenna output. An antenna controller selectively couples an output of one of the plurality of antennas to an input of each.
Abstract:
The application relates to sliding-window maximum a posteriori MAP decoding. In a MAP decoder, a method for determining binary states of received signals comprises receiving data bits, each bit being accompanied by at least one parity bit, providing each received data bit and parity bit with an address (16a) of a calculated extrinsic value (14a) and associated intrinsic data and storing the data bits, the parity bits and the extrinsic value address in a first memory (12).
Abstract:
A data processing system ciphers and transfers data between a first memory unit and a second memory unit, such as, for example, between a share memory architecture (SMA) static random access memory (SRAM) and a double data rate (DDR) synchronous dynamic random access memory (SDRAM). The system includes a ciphering engine and a data-mover controller. The data-mover controller includes at least one register having a field that specifies whether or not the transferred data should be ciphered. If the field specifies that the transferred data should be ciphered, the field also specifies the type of ciphering that is to be performed, such as a third generation partnership project (3GPP) standardized confidentially cipher algorithm “f8” or integrity cipher algorithm “f9”.
Abstract:
A protocol engine (PE) for processing data within a protocol stack in a wireless transmit/receive unit (WTRU) is disclosed. The protocol stack executes decision and control operations. The data processing and re-formatting which was performed in a conventional protocol stack is removed from the protocol stack and performed by the PE. The protocol stack issues a control word for processing data and the PE processes the data based on the control word. Preferably, the WTRU includes a shared memory and a second memory. The shared memory is used as a data block place holder to transfer the data amongst processing entities. For transmit processing, the PE retrieves source data from the second memory and processes the data while moving the data to the shared memory based on the control word. For receive processing, the PE retrieves received data from the shared memory and processes it while moving the data to the second memory.
Abstract:
A data processing system ciphers and transfers data between a first memory unit and a second memory unit, such as, for example, between a share memory architecture (SMA) static random access memory (SRAM) and a double data rate (DDR) synchronous dynamic random access memory (SDRAM). The system includes a ciphering engine and a data-mover controller. The data-mover controller includes at least one register having a field that specifies whether or not the transferred data should be ciphered. If the field specifies that the transferred data should be ciphered, the field also specifies the type of ciphering that is to be performed, such as a third generation partnership project (3GPP) standardized confidentially cipher algorithm “f8” or integrity cipher algorithm “f9”.
Abstract:
A pseudorandom code generator comprising a code generator configured to generate a series of 2 M M-bit wide binary codes starting from a lowest bit to a highest bit; an index code selector configured to select an M-bit wide binary index code corresponding to an index number of a pseudorandom code among a set of pseudorandom codes; a logical operator configured to perform a logical operation between each code generated by the code generator and the index code selected by the index code selector in order to generate a 2 M -bit wide pseudorandom code; and a code reverser configured to reverse an order of bits generated by the code generator from a least significant bit to a most significant bit.
Abstract:
A Node-B/base station receiver comprises at least one antenna for receiving signals. Each finger of a pool of reconfigurable Rake fingers recovers a multipath component of a user and is assigned a code of the user, a code phase of the multipath component and an antenna of the at least one antenna. An antenna/Rake finger pool interface provides each finger of the Rake pool an output of the antenna assigned to that Rake finger. A combiner combines the recovered multipath components for a user to produce data of the user.