Abstract:
A method and apparatus for managing radio resources in one or more wireless communication networks. At least one radio resource manager (RRM) is provided within a network node, or as an independent entity. The RRM monitors performance on wireless communication links of the network(s) and interacts with nodes associated with those links to change the configuration on a particular wireless communication link if its performance (i.e., quality) falls below an established threshold. Information regarding current resource usage of the network is sent to the RRM by the nodes. Each of the nodes may send a quality report to the RRM including wireless communication link quality measurements and performance statistics. Alternatively, the RRM may perform the wireless communication link quality measurements. The RRM facilitates the broadcasting of information regarding current resource usage of one network to other networks to avoid collisions and interference.
Abstract:
A method and wireless communication system for transferring management information is shown in figure 1B below. The system includes at least one access point (AP) (110) including a first management entity (150) and a second management entity (155), and at least one wireless transmit/receive unit (WTRU) (105) including a third management entity (165) and a fourth management entity (170). The AP transmits a management information base (MIB) information request action frame including a category field and an action details field to the WTRU. In response to receiving the information request action frame, the WTRU determines whether or not to provide management information to the AP. When the WTRU provides management information to the AP, the WTRU compiles management information stored in a MIB located in the WTRU and transmits a MIB information report action frame to the AP.
Abstract:
A drifting wireless transmit/receive unit (WTRU) has an associated drift radio network controller (D-RNC) and an associated servicing radio network controller (S-RNC). The D-RNC sends a request message to the S-RNC requesting measurements of the drifting WTRU. The S-RNC receives the request message and sends an information message with the requested measurements to the D-RNC. The D-RNC receives the information message.
Abstract:
A method and system is disclosed for providing intelligent remote access to wireless transmit/receive units (WTRUs). A translator is provided in base stations so that system controllers may issue application level network management protocol messages to base stations. The messages are transmitted by the translator to a medium access control (MAC) messaging protocol and forwarded to WTRUs. Information provided by WTRUs to base stations is translated from a MAC protocol to an application level network management protocol so that the information may be accessed by system controllers using application level network management protocols.
Abstract:
The present invention integrates resource allocation between time division duplex (TDD) and frequency division duplex (FDD) in wireless communication systems (200). A radio network controller (RNC) (206, 210) receives a radio access bearer (RAB) request from a core network or a wireless receive/transmit unit. The RNC utilizes a TDD-FDD selector (204, 208) to assign radio resources in response to the request. The TDD-FDD selector evaluates various parameters regarding the received RAB request and determines whether it is preferable to assign TDD resources or FDD resources and whether such resources are currently available. Once resources are assigned, system conditions are evaluated to determine whether optimizations may be made to a current resource allocation.
Abstract:
A method and system for managing radio resources in a time-slotted wireless communication system is based on the quality of service (QoS) information of a user. A plurality of time slots of a radio resource are sorted into a plurality of different categories, such as high QoS time slots, high capacity time slots, and balanced time slots (305). Each category is associated with a different level of QoS. QoS information with respect to a user is obtained in response to a radio resource request received from the user (310). The user is associated with a particular category of time slots based on the QoS information of the user (315).
Abstract:
A method for congestion control in the uplink of a wireless communication system having a wireless transmit/receive unit (WTRU) and a radio network controller (RNC) begins by receiving an interference report for each user. The average noise rise for each user calculated and congestion relieving measures are implemented based upon the average noise rise and the WTRU battery level. A method for congestion control in the downlink of a wireless communication system having a WTRU and a RNC begins by receiving a transmission power report for each user. The transmission power for each user is calculated, and congestion relieving measures are implemented based upon the average transmission power and the WTRU battery level.