Abstract:
A MEMS capacitive sensing interface includes a sense capacitor having a first terminal and a second terminal, and having associated therewith a first electrostatic force. Further included in the MEMS capacitive sensing interface is a feedback capacitor having a third terminal and a fourth terminal, the feedback capacitor having associated therewith a second electrostatic force. The second and the fourth terminals are coupled to a common mass, and a net electrostatic force includes the first and second electrostatic forces acting on the common mass. Further, a capacitance measurement circuit measures the sense capacitance and couples the first terminal and the third terminal. The capacitance measurement circuit, the sense capacitor, and the feedback capacitor define a feedback loop that substantially eliminates dependence of the net electrostatic force on a position of the common mass.
Abstract:
An integrated package of at least one environmental sensor and at least one MEMS acoustic sensor is disclosed. The package contains a shared port that exposes both sensors to the environment, wherein the environmental sensor measures characteristics of the environment and the acoustic sensor measures sound waves. The port exposes the environmental sensor to an air flow and the acoustic sensor to sound waves. An example of the acoustic sensor is a microphone and an example of the environmental sensor is a humidity sensor.
Abstract:
Microelectromechanical systems (MEMS) pressure sensors having a leakage path are described. Provided implementations can comprise a MEMS pressure sensor system associated with a back cavity and a membrane that separates the back cavity and an ambient atmosphere. A pressure of the ambient atmosphere is determined based on a parameter associated with movement of the membrane.
Abstract:
Systems and techniques for detecting blockage associated with a microelectromechanical systems (MEMS) microphone of a device are presented. The device includes a MEMS acoustic sensor and a processor. The MEMS acoustic sensor is contained in a cavity within the device. The processor is configured to detect a blockage condition associated with an opening of the cavity that contains the MEMS acoustic sensor.
Abstract:
A programmable acoustic sensor is disclosed. The programmable acoustic sensor includes a MEMS transducer and a programmable circuitry coupled to the MEMS transducer. The programmable circuitry includes a power pin and a ground pin. The programmable acoustic sensor also includes a communication channel enabling data exchange between the programmable circuitry and a host system. One of the power pin and the ground pin can be utilized for data exchange.
Abstract:
An integrated package of at least one environmental sensor and at least one MEMS acoustic sensor is disclosed. The package contains a shared port that exposes both sensors to the environment, wherein the environmental sensor measures characteristics of the environment and the acoustic sensor measures sound waves. The port exposes the environmental sensor to an air flow and the acoustic sensor to sound waves. An example of the acoustic sensor is a microphone and an example of the environmental sensor is a humidity sensor.
Abstract:
A time-division-multiplexing (TDM) based noise cancelation headphone is presented herein. A headphone can include an earbud including a speaker, and a TDM based bus that electrically couples the earbud to a portable electronic device. Further, the headphone can include a first micro-electro-mechanical system (MEMS) microphone that is configured to receive a first set of acoustic waves outside of an ear canal, generate first microphone information based on the first set of acoustic waves, and send, utilizing the TDM based bus, the first microphone information directed to the portable electronic device. The speaker is configured to receive, utilizing the TDM based bus, feedforward noise cancelation information associated with the first microphone information from the portable electronic device, and generate, based on the feedforward noise cancelation information, sound within a portion of the ear canal.
Abstract:
A method and system for image stabilization is disclosed. The image stabilization system includes a first pair of light sensors placed along an axis relative to a first axis, each light sensor is configured to provide a signal indicative of intensity of light received by the light sensor. The image stabilization system further includes a first directional light filter configured to selectively permit passage of incident light to the first pair of light sensors based on an angle of the incident light with reference to the first axis. An image stabilization circuit is configured to receive a pair of signals from the first pair of light sensors and generates a first signal indicative of a change in the angle of incidence of the incident light with reference to the first axis.
Abstract:
A MEMS capacitive sensing interface includes a sense capacitor having a first terminal and a second terminal, and having associated therewith a first electrostatic force. Further included in the MEMS capacitive sensing interface is a feedback capacitor having a third terminal and a fourth terminal, the feedback capacitor having associated therewith a second electrostatic force. The second and the fourth terminals are coupled to a common mass, and a net electrostatic force includes the first and second electrostatic forces acting on the common mass. Further, a capacitance measurement circuit measures the sense capacitance and couples the first terminal and the third terminal. The capacitance measurement circuit, the sense capacitor, and the feedback capacitor define a feedback loop that substantially eliminates dependence of the net electrostatic force on a position of the common mass.
Abstract:
An integrated package of at least one environmental sensor and at least one MEMS acoustic sensor is disclosed. The package contains a shared port that exposes both sensors to the environment, wherein the environmental sensor measures characteristics of the environment and the acoustic sensor measures sound waves. The port exposes the environmental sensor to an air flow and the acoustic sensor to sound waves. An example of the acoustic sensor is a microphone and an example of the environmental sensor is a humidity sensor.