Abstract:
This disclosure provides systems, methods and apparatus relating to electromechanical display devices. In one aspect, a multi-stage interferometric modulator (IMOD) can include a movable reflector that can be moved to different positions to produce different reflected colors. The IMOD can include deformable elements that are coupled to a back side of the movable reflector and provide support to the movable reflector. The deformable elements can provide a restoring force that biases the movable reflector to a resting position. The IMOD can include one or more restoring force modifiers that are configured to increase the restoring force when engaged. The restoring force modifiers can be between the movable reflector and the deformable elements such that the deformable elements contact the restoring force modifiers when the movable reflector is displaced to a contacting position.
Abstract:
Systems, methods and apparatus for fabricating devices use an inductively-coupled plasma. An inductively coupled plasma system includes a reaction chamber including a reaction space and a coil chamber. The system includes a workpiece support within the reaction space. The system includes a first inductive coil section and a second inductive coil section, the first and second inductive coil sections being independently movable. At least one power source is coupled to the first and second inductive coil sections. The first and second inductive coil sections and the at least one power source are configured to induce an inductively coupled plasma (ICP) in the reaction space. An adjustment mechanism is configured to move the first inductive coil section relative to the second inductive coil section.
Abstract:
A laser absorption layer (91) is first selectively formed in a seal pattern region surrounding an array of electromechanical systems elements (90), followed by depositing an antistiction layer (93) as a blanket layer over the substrate and the laser absorption layer. The antistiction layer is then selectively removed from the seal pattern using a laser. An epoxy sealing material (100) is provided in the seal pattern where the antistiction layer was removed and a backplate (101) is sealed to the substrate using epoxy.
Abstract:
This disclosure provides systems, methods and apparatus for a MEMS device. In one aspect, an electromechanical systems apparatus includes a substrate, a stationary electrode positioned over the substrate, a movable electrode spaced from the stationary electrode by a gap, and at least one support structure extending above the movable electrode. The support structure includes an inorganic dielectric layer and a polymer layer.
Abstract:
Certain MEMS devices include layers patterned to have tapered edges. One method for forming layers having tapered edges includes the use of an etch leading layer. Another method for forming layers having tapered edges includes the deposition of a layer in which the upper portion is etchable at a faster rate than the lower portion. Another method for forming layers having tapered edges includes the use of multiple iterative etches. Another method for forming layers having tapered edges includes the use of a liftoff mask layer having an aperture including a negative angle, such that a layer can be deposited over the liftoff mask layer and the mask layer removed, leaving a structure having tapered edges.
Abstract:
Mechanical layers and methods of shaping mechanical layers are disclosed. In one embodiment, a method includes depositing a support layer (85), a sacrificial layer (84) and a mechanical layer (34) over a substrate (20), and forming a support post (60) from the support layer. A kink (90) is formed adjacent to the support post in the mechanical layer. The kink comprises a rising edge (91) and a falling edge (92), and the kink is configured to control the shaping and curvature of the mechanical layer upon removal of the sacrificial layer.
Abstract:
A microelectromechanical device (MEMS) utilizing a porous electrode surface for reducing stiction is disclosed. In one embodiment, a microelectromechanical device is an interferometric modulator 80 that includes a transparent electrode 81 having a first surface 81a; and a movable reflective electrode 82 with a second surface 82a facing the first surface 81a. The movable reflective electrode 82 is movable between a relaxed and actuated (collapsed) position. An aluminum layer is provided on either the first or second surface. The aluminum layer is then anodized to provide an aluminum oxide layer 83 which has a porous surface 83a. The porous surface 83a, in the actuated position, decreases contact area between the electrodes 81 and 82, thus reducing stiction.
Abstract:
Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, portions of the rivet structures extend through the movable layer and contact underlying layers. In other embodiments, the material used to form the rigid support structures may also be used to passivate otherwise exposed electrical leads in electrical connection with the MEMS devices, protecting the electrical leads from damage or other interference.
Abstract:
This disclosure provides systems, methods and apparatus for delivery of gas from solid phase sources. A solid phase gas source canister can include multiple separated volumes configured to contain multiple quantities of a solid phase gas source. Sublimated vapor can be independently produced by each quantity of the solid phase gas source. In some implementations, the solid phase gas source canisters are configured for simultaneous fill of the multiple volumes with a solid source gas phase powder.
Abstract:
This disclosure provides systems, methods and apparatus for processing multiple substrates in a batch cluster tool. A batch cluster tool can include a transfer chamber, an etch process chamber, and one or both of an ALD process chamber and an SAM process chamber. Each of the batch process chambers can be a common chamber where the substrates are open to one another, or can include multiple process subchambers that are isolated from one another in operation. Multiple substrates are transferred into an etch chamber. The substrates are exposed to a vapor phase etchant. The substrates can then be transferred to an atomic layer deposition (ALD) chamber and exposed to vapor phase reactants to form a thin film. The substrates can be transferred either from the etch process chamber or the ALD chamber to a third chamber and exposed to vapor phase reactants to form a self-assembled monolayer (SAM).