Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a wall and a vascular engineered lattice structure formed inside of the wall. The vascular engineered lattice structure includes at least one of a hollow vascular structure and a solid vascular structure configured to communicate fluid through the vascular engineered lattice structure.
Abstract:
A method for forming a cooling hole extending from an inlet on a first surface of a wall to an outlet on a second surface of the wall includes forming a diffusing section of the cooling hole, and a trailing edge on the outlet by electrical discharge machining, and forming longitudinal lobes in the diffusing section. The metering section extends from the inlet on a first surface of the wall towards the second surface of the wall. The diffusing section extends from the outlet to one end of a metering section located between the inlet and the outlet. The outlet is substantially linear or convex at the trailing edge and the lobes are separated by longitudinal ridges.
Abstract:
A gas turbine engine component includes a wall with an inner face and an outer skin. A plurality of cooling air holes extend from the inner face to the outer skin. The cooling holes include an inlet merging into a metering section, and a diffusion section downstream of the metering section, and extend to an outlet at the outer skin. The diffusion section includes a plurality of lobes. A coating layer is formed on the outer skin, with at least a portion of the plurality of lobes formed within the thermal barrier coating. A method of forming such a component is also disclosed.
Abstract:
Disclosed is a gas turbine engine including a compressor section and a turbine section. The gas turbine engine includes a gas turbine engine component having a first wall providing an outer surface of the gas turbine engine component and a second wall spaced-apart from the first wall. The first wall is a gas-path wall exposed to a core flow path of the gas turbine engine. The second wall is a non-gas-path wall. A cooling passageway is provided between the second wall and the first wall. The second wall has a trip strip provided thereon.
Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a first wall, a second wall and at least one row of shaped pedestals extending between the first wall and the second wall. The at least one row of shaped pedestals includes a first set of C-shaped pedestals and a second set of C-shaped pedestals adjacent to the first set of C-shaped pedestals.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a platform having a first path side and a second path side and a platform cooling circuit disposed on one of the first path side and the second path side of the platform. The platform cooling circuit includes a first core cavity, a cavity in fluid communication with the first core cavity, and a cover plate positioned to cover at least the cavity.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure including, among other things, an airfoil that extends between a leading edge and a trailing edge and a cooling circuit disposed inside of the airfoil. The cooling circuit includes at least one core cavity that extends inside of the airfoil, a baffle received within the at least one core cavity, a plurality of pedestals positioned adjacent to the at least one core cavity and a first plurality of axial ribs positioned between the plurality of pedestals and the trailing edge of the airfoil.