Abstract:
The present invention relates to a method for operating a wind power facility during high- wind operations, the method comprising the steps of determining one or more operational parameters, and limiting one or more reactive power capabilities of the wind power facility to one or more predetermined reactive power values if at least one determined operational parameter differs from a predetermined value or a predetermined range. The one or more determined operational parameters may be a measured or estimated wind speed, or it may be based on at least a measured active power value and a measured generator speed. The present invention further relates to a wind power control module for carrying out the method.
Abstract:
A method and associated control arrangement are disclosed for controlling a de-rated power output of a wind turbine generator, where the wind turbine generator is associated with a predetermined power ramp rate upper limit and operating with a de-rated rotor speed. The method includes ramping the power output from an initial power level to a target power level during a ramping interval. During a first portion of the ramping interval, the power output is ramped at a first power ramp rate less than the power ramp rate upper limit. The method further includes ramping the rotor speed to a predetermined rotor speed value contemporaneously with ramping the power output during the first portion of the ramping interval. The first power ramp rate is determined such that a difference between the power output and the target power level is monotonically decreasing during the entirety of the ramping interval.
Abstract:
The invention relates to a control system for a wind turbine. The wind turbine comprises a power generator configured to generate power dependent on a power request. The control system comprises a ramp rate limiter configured to restrict a rate of change of the power request according to a rate of change limit and configured to determine the rate of change limit dependent on a power difference between the power request and an estimated available wind power.
Abstract:
The present invention relates to a method for operating a wind power plant in a wake situation, said wind power plant being connected to a power grid, the method comprising the steps of operating the wind power plant in a predetermined power mode of operation, terminating said predetermined power mode of operation, and increasing power generation of the wind power plant to a power level that exceeds an optimized wake power level of the wind power plant, and injecting the increased amount of power into the power grid as a power boost. Thus, the present invention is capable of generating a power boost to an associated power grid, said power boost exceeding the power level normally being available in a wake situation. The present invention further relates to a system for carrying out the method.
Abstract:
The invention relates to a method of controlling a wind turbine, the wind turbine comprising wind turbine blades attached to a rotor hub and a control system for pitching the blades relative to the hub. The method comprises providing wake sectors assigned to different wind directions and providing a normal pitch schedule to control an output parameter of the wind turbine (e.g. power, rotational speed), comprising pitch reference values as a function of the wind speed and at least one of the parameters of thrust coefficient C t and axial induction factor a. Further, is provided a modified pitch schedule to control a modified output parameter of the wind turbine, comprising pitch reference values in dependence of the wind speed and at least one modified parameter of the thrust coefficient and/or the axial induction factor. Upon receiving indications of a wind speed and a wind direction at the wind turbine is determined a pitch reference value for the wind turbine blades according to the normal pitch schedule if the wind direction falls outside the wake sector and otherwise according to the modified pitch schedule. The wind turbine is then controlled according to the pitch reference value. The invention further relates to a method of controlling the wind turbines in a wind park, wherein each wind turbine in the park is controlled locally according to the above mentioned control method.
Abstract:
This invention relates to a method and a power plant controller arranged to carry out the method. The method is on an intelligent dispatching of the power production to wind turbines and optional compensation equipment of a wind power plant, as the power producing units of a wind power plant. The invention relates to a case where the requested produced power is less than the total capacity of the power plant, and the invention relates to utilizing this situation to dispatch set points to the wind turbines and the compensation equipment in a flexible way. This flexibility may increase the wind turbines' life time, help in scheduling maintenance and expand the electrical operating range of the wind power plant. The determination of the set points on active and reactive power is a combined determination of both set points for each of the energy producing units of the wind power plant.
Abstract:
A method is provided for warning a wind turbine generator (WTG) (100) in a wind park (200, 400, 1300) of an extreme wind event. According to one embodiment of the method, one or more WTGs are adaptively selected to operate as front line WTGs. The one or more front line WTGs detect extreme wind events and provide a warning (230) to other WTGs. The selection of front line WTGs is adaptive to changing wind conditions. In another embodiment, a wind park (200, 400, 1300) includes a group of one or more WTGs of a first type (220) located in an inner region of the wind park and a plurality of WTGs of a second type (210) located in an outer region of the wind park that at least partially surrounds the inner region. The first type of WTG (220) is structurally weaker and/or rated for higher performance than the second type of WTG (210).
Abstract:
A method, a controller and a wind turbine with a controller for controlling the wind turbine in a cluster of wind turbines. Each wind turbine is controlled individually and each windturbine is configured to deliver power to the same utility grid. According to the method a delivery from a first wind turbine is reduced from a present power level to a reduced power level in response to an initial frequency of the utility grid exceeding a first threshold value; and the wind turbine is allowed to continue delivering power at the reduced power level.
Abstract:
Embodiments herein describe varying the rotor speed based on the current wind speed when operating in a low power mode. Generally, as the wind speed increases above the rated wind speed (i.e., the wind speed at which the turbine is capable of producing its rated or maximum output power), the rotor speed can be reduced thereby minimizing the risk that the turbine experiences smearing or torque reversals. In one embodiment, as the rotor speed decreases, the turbine maintains the ability to ramp to the rated power of the turbine only by pitching in the blades to an optimal blade pitch angle. Thus, upon receiving a request to cease operating in the low power mode, the turbine can increase the output power to the rated power without first increasing the rotor speed.
Abstract:
A diagnostic system for use in a wind turbine yaw system, comprising: a tower motion sensor configured to output a signal indicative of tower oscillation, in particular though not exclusively side to side tower oscillation, and a diagnostic module configured to: analyse the tower motion sensor signal to identify frequency content of the signal that is not associated with the tower oscillation; and correlate the identified frequency content with the operation of the yaw system thereby to determine that the yaw system requires maintenance. Beneficially the invention provides that the health of the yaw system can be determined by analysing the oscillatory movement of the tower as measured by a tower motion sensor installed at a suitable location for example at the top of the tower or in the nacelle for example.