Abstract:
A power actuator for lifting a pivotal lift gate closing an access opening in a motor vehicle body. The actuator includes a lower tubular housing; a lead screw having a lower head portion journaled in a lower portion of the tubular housing and a threaded shaft portion extending upwardly from the head portion within the tubular housing; a tubular extender rod positioned slidably and telescopically within the tubular housing in concentric surrounding relation to the shaft portion of the lead screw and including a nut structure proximate a lower end thereof threadably engaging the shaft portion of the lead screw; a pivotal mounting structure on the lower end of the tubular housing to pivotally mount the lower end of the tubular housing to a side edge of the access opening; a pivotal mounting structure on the upper end of the tubular extender rod for pivotally mounting the extender rod to the lift gate; an electric motor positioned on the motor vehicle body proximate the access opening; and a flexible cable extending from the output of the motor and passing through an aperture in the lower end of the tubular housing for driving engagement with the head portion of the lead screw. The cable is mounted for rotation about a lengthwise axis of the cable whereby actuation of the motor moves the tubular extender rod axially relative to the tubular housing and provides opening or closing movement of the gate.
Abstract:
A swinging-sliding door module for a rail vehicle is provided, the swinging-sliding door module including a door leaf and a rotatably mounted rotary pillar coupled to the door leaf. Furthermore, the swinging-sliding door module includes a support which is oriented longitudinally in the sliding direction of the door leaf and is mounted so as to be displaceable transversely with respect to the longitudinal extent thereof in the horizontal direction in relation to the rotary pillar and in which the door leaf is mounted displaceably. A first over-center locking brings about the deployment movement of the support. Furthermore, the coupling between rotary pillar and door leaf includes a second over-center locking which acts in the deployment direction of the door leaf.
Abstract:
A braking apparatus has a main body for connection to one of a frame and a closure member mounted on the frame to undergo linear reciprocating movement between open and closed positions of the closure member. A tubular shaft is mounted in a main body for undergoing rotation. A resistance member is rotatably mounted on the tubular shaft and is disposed in an interior space of the main body containing a braking fluid. A spiral rod for connection to the other of the frame and the closure member is screw-threadably engaged with the tubular shaft so that the tubular shaft undergoes rotation when the spiral rod and the tubular shaft are relatively moved in an axial direction of the spiral rod. When the closure member undergoes linear reciprocating movement, the main body or spiral rod relatively moves in the axial direction of the spiral rod, the tubular shaft and the resistance member undergo rotational movement, and the resistance member receives a resistance of the braking fluid so that the tubular shaft rotates under a braking force of the braking fluid and reduces a movement speed of the closure member.
Abstract:
A variable pitch screw is manufactured by twisting a prepared blank to the desired shape. The blank varies along its length such that it naturally twists to the desired shape.
Abstract:
A door operator for a vehicle wherein resilient means couples the drive arm to the door to control the force applied by the door operator throughout the door closing cycle. The operator is compact and mountable in the side wall of the vehicle above the floor and includes an independent locking system, together with an emergency opening assembly.
Abstract:
A damping device for a hatch in a military vehicle used during its closing and opening, said hatch being integral with hinges hinged with respect to an interface, wherein said device comprises a tubular body integral with the hinges and hinged between two bearings integral with the interface, said body enclosing two fixed damping means between which a rod is positioned, said rod being mobile in translation to activate one of the damping means during the opening of the hatch and the other damping means during the closing of the hatch.
Abstract:
A pivoting sliding door for vehicles, particularly rail vehicles or lift cabins. The pivoting sliding door includes a vehicle body, at least one door wing which, in a closed position is arranged within the vehicle body and which, in an opened position is arranged in front of and on an exterior side of the vehicle body. Further included is at least one driving device, at least two transverse guiding devices and at least one longitudinal guiding device to permit a transverse movement of the at least one door wing to and along the vehicle body. The at least one longitudinal guiding device is moved by the at least two transverse guiding devices, and the at least one door wing is locked by a pivoting part that engages in one of the at least two transverse guiding devices.
Abstract:
Drive system for moving a load along a curved path. The drive system includes a base for mounting the drive system, the base having a curved track for guiding the load along the curved path. There is a load engaging mechanism mounted on the base for movement relative to the base, the load engaging mechanism being for moving the load. The load engaging mechanism has a curved track engaging roller for engaging the curved track. A linear drive mechanism including a linearly driven member is mounted on the base. The linearly driven member includes a driving pivot. A drive link is attached to the driving pivot at a drive force receiving end of the drive link, the drive link including a driven pivot at a drive force communicating end of the drive link. The driven pivot is attached to the load engaging mechanism, whereby linear motion of the driving pivot causes motion of the load along the curved path.
Abstract:
Swivel-sliding door system for a vehicle, having a door leaf situated in the vehicle wall in the closed state, and situated on the outside in front of the vehicle wall in the open state, and having drive means, transverse guide means and longitudinal guide means which make possible a swivel-sliding movement of the door leaf. The longitudinal guide means comprise a bearing rail which extends over the width of the door opening and which is coupled to drive members which can cause the bearing wheel to execute a movement transversely to the vehicle wall (3). The bearing rail is provided with a first set of rollers (62,63) which run in the bearing rail and which are mounted on a coupling member (65) which is provided with a second set of rollers (66,67) which are situated in a lower position and which interact with a door rail (6) attached to the top of a door leaf (1,2).However, the drive means comprise a drive lever driven by the housing of a motor and lead screws which are driven by the spindle of the motor and which support nut members coupled to the door leaves.The motor is mounted on a mounting plate whose bottom supports, moreover, a guide rail and roller guide members. The roller guide members interact with roller supports which are linked to the bearing rail and which are actuated by the drive lever. The spindle of the drive lever also actuates a lowermost swivel arm, coupled to the door leaf, via a vertical rod.