Abstract:
The present invention is a rotary device that may be adapted for use as a propeller assembly and electrical generator for aerial vehicles or other vehicles intended for fluid media. In one example, the device includes a ring assembly having a plurality of centrally linked blades coupled to a rotatable common hub. Rotary motion of the ring assembly is facilitated by coupling it to an opposed cylinder, opposed piston, internal combustion. The ring assembly includes components of an electrical power generating system so that electrical power is produced from the rotation of the ring assembly.
Abstract:
Methods and apparatuses for capturing and recovering unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be captured at an extendable boom. The boom can be extended to deploy a recovery line to retrieve the aircraft in flight. The boom can be retracted when not in use to reduce the volume it occupies. A tension device coupled to the recovery line can absorb forces associated with the impact of the aircraft and the recovery line.
Abstract:
Methods and apparatuses for launching and capturing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to retrieve the aircraft in flight. The aircraft can then be retrieved from the recovery line. The boom can be retracted when not in use to reduce the volume it occupies.
Abstract:
The invention describes a microaircraft, which can be associated for instance to a cellular phone, provided with at least four microrotors actuated with compressed fluid or by ring-shaped electric motors.
Abstract:
VTOL micro-aircraft comprising a first and a second ducted rotor mutually aligned and distanced according to a common axis and whose propellers are driven in rotation in mutually opposite directions. Between the two ducted rotors are positioned a fuselage and a wing system formed by wing profiles forming an X or an H configuration and provided with control flaps.
Abstract:
An airship has a generally spherical shape and has an internal envelope for containing a lifting gas such as Helium or Hydrogen. The airship has a propulsion and control system that permits it to be flown to a desired loitering location, and to be maintained in that location for a period of time. In one embodiment the airship may achieve neutral buoyancy when the internal envelope is as little as 7% full of lifting gas, and may have a service ceiling of about 60,000 ft. The airship has an equipment module that can include either communications equipment, or monitoring equipment, or both. The airship can be remotely controlled from a ground station. The airship has a solar cell array and electric motors of the propulsion and control system are driven by power obtained from the array. The airship also has an auxiliary power unit that can be used to drive the electric motors. The airship can have a pusher propeller that assists in driving the airship and also moves the point of flow separation of the spherical airship further aft. In one embodiment the airship can be refuelled at altitude to permit extended loitering.
Abstract:
An airship has a generally spherical shape and has an internal envelope for containing a lifting gas such as Helium or Hydrogen. The airship has a propulsion and control system that permits it to be flown to a desired loitering location, and to be maintained in that location for a period of time. In one embodiment the airship may achieve neutral buoyancy when the internal envelope is as little as 7% full of lifting gas, and may have a service ceiling of about 60,000 ft. The airship has an equipment module that can include either communications equipment, or monitoring equipment, or both. The airship can be remotely controlled from a ground station. The airship has a solar cell array and electric motors of the propulsion and control system are driven by power obtained from the array. The airship also has an auxiliary power unit that can be used to drive the electric motors. The airship can have a pusher propeller that assists in driving the airship and also moves the point of flow separation of the spherical airship further aft. In one embodiment the airship can be refuelled at altitude to permit extended loitering.
Abstract:
The present invention relates to a system for retrieving data from remote difficult to reach terrain, such as wilderness areas, etc. and in particular to a system comprised of one or more surface based data collectors in communication with one or more wireless transceivers adapted to transmit the collected data to an unmanned aerial vehicle adapted to fly within a predetermined distance from the data collector and receive data collected therefrom. The present invention further relates to an unmanned aerial vehicle adapted to fly a flight pattern relative to a moveable surface object or for controlling the position of a moveable surface object relative to the flight path of the unmanned aerial vehicle. Finally, the present invention relates to an improved unmanned aerial vehicle having airframe structural elements with electrical circuits adhered to the surfaces of the structural elements.
Abstract:
A miniature, unmanned aircraft for acquiring and/or transmitting data, capable of automatically maintaining desired airframe stability while operating by remote directional commands. The aircraft comprises a fuselage and a wing, a piston engine and propeller, a fuel supply, at least one data sensor and/or radio transceiver, a microprocessor disposed to manage flight, a radio transceiver for receiving remotely generated flight direction commands, a GPS receiver, a plurality of control surfaces and associated servomechanisms, for controlling flight stabilization and direction, roll, pitch, yaw, velocity, and altitude sensors. The microprocessor uses roll, pitch, yaw, and altitude data to control attitude and altitude of the aircraft automatically, but controls flight direction solely based on external commands. The aircraft does not exceed fifty-five pounds.
Abstract:
A miniature, unmanned aircraft having interchangeable data handling modules, such as sensors for obtaining digital aerial imagery and other data, and radio transmitters and receivers for relaying data. The aircraft has a microprocessor for managing flight, remote control guidance system, and electrical supply system. The data handling modules have an aerodynamic housing and manual fasteners enabling ready installation and removal. One or more data acquiring sensors or data transferring apparatus and support equipment such as batteries and communications and power cables are contained within the module. A plurality of different modules are preferably provided. Each module, when attached in a preferred location below the wing, does not significantly alter the center of gravity of the airframe. Preferably, each module contains the supervisory microprocessor so that the microprocessor need not be part of the airframe.