Abstract:
A spectrometer 1A includes spectroscopic units 2A, 2B, and 2C. A light passing part 21A, a reflection part 11A, a common reflection part 12, a dispersive part 40A, and a light detection part 22A included in the spectroscopic unit 2A are arranged along a reference line RL1 when viewed in a Z-axis direction. A light passing part 21B, a reflection part 11B, the common reflection part 12, a dispersive part 40B, and a light detection part 22B included in the spectroscopic unit 2B are arranged along a reference line RL2 when viewed in the Z-axis direction. A light passing part 21C, a reflection part 11C, the common reflection part 12, a dispersive part 40C, and a light detection part 22C included in the spectroscopic unit 2C are arranged along a reference line RL3 when viewed in the Z-axis direction. The reference line RL1, the reference line RL2, and the reference line RL3 intersect with one another.
Abstract:
A spectroscopic scanning device, a portable spectroscopic scanning system, and methods for using the spectroscopic scanning device are described that include at least one focusing element configured to collect light, a beam-steering element configured to direct a portion of the collected light from the at least one focusing element, and a detector configured to receive the directed light from the beam-steering element, wherein the beam-steering element is operable to successively select portions of light from a plurality of locations within its field of regard.
Abstract:
Die vorliegende Erfindung betrifft eine Messlichtquelle zum Erzeugen von Messlicht mit einer gleichmäßigen räumlichen Beleuchtungsstärkeverteilung. Die Messlichtquelle umfasst einen Hohlkörper (01) mit einer diffus reflektierenden Innenfläche. Im Hohlkörper (01) sind ein konkaver, hohlspiegelförmiger Beleuchtungsraum (04), ein rohrartiger Lichtformungsraum (06) und ein konkaver, hohlspiegelförmiger Lichtaustrittsraum (07) ausgebildet, die eine gemeinsame Achse (03) aufweisen. Im Beleuchtungsraum (04) ist eine Lichtquelle (08) zum Erzeugen von Licht zumindest teilweise angeordnet. Der Lichtaustrittsraum (07) weist einen Lichtaustritt (14) auf. Der Beleuchtungsraum (04) und der Lichtaustrittsraum (07) stehen sich mit ihren Hohlspiegelformen gegenüber und sind durch den rohrartigen Lichtformungsraum (06) verbunden. Erfindungsgemäß ist im Hohlkörper (01) eine diffus reflektierende Reflexionsscheibe (11) zum Reflektieren des von der im Lichtaustrittsraum (07) angeordneten Innenfläche des Hohlkörpers (01) reflektierten Lichtes durch den Lichtaustritt (14) nach außerhalb des Hohlkörpers (01) angeordnet. Im Weiteren betrifft die Erfindung eine Messanordnung zum Erfassen eines absoluten Reflexionsspektrums einer Probe und zum Durchführen einer Referenzmessung.
Abstract:
The present invention relates to an integrated photonic device (1) comprising an image detector (2) that comprises an array of pixels. The device further comprises an integrated waveguide (5) and a light coupler (3) comprising a light receiving part (7) optically coupled to the integrated waveguide (5) for receiving a light signal. The light coupler (3) is adapted for coupling a same predetermined spectral band of the light signal to each of a plurality of pixels of the image detector (2).
Abstract:
An imaging system includes a light source configured to illuminate a target and a camera configured to image light responsively emitted from the target and reflected from a spatial light modulator (SLM). The imaging system is configured to generate high-resolution, hyperspectral images of the target. The SLM includes a refractive layer that is chromatically dispersive and that has a refractive index that is controllable. The refractive index of the refractive layer can be controlled to vary according to a gradient such that light reflected from the SLM is chromatically dispersed and spectrographs information about the target can be captured using the camera. Such a system could be operated confocally, e.g., by incorporating a micromirror device configured to control a spatial pattern of illumination of the target and to modulate the transmission of light from the target to the camera via the SLM according to a corresponding spatial pattern.
Abstract:
A spectrometer 1A includes a light detection element 20 provided with a light passing part 21, a first light detection part 22, and a second light detection part 26, a support 30 fixed to the light detection element 20 such that a space S is formed, a first reflection part 11 provided in the support 30 and configured to reflect light L1 passing through the light passing part 21 in the space S, a second reflection part 12A provided in the light detection element 20 and configured to reflect the light L1 reflected by the first reflection part 11 in the space S, and a dispersive part 40A provided in the support 30 and configured to disperse and reflect the light L1 reflected by the second reflection part 12A to the first light detection part 22 in the space S. A plurality of second light detection parts 26 is disposed in a region surrounding the second reflection part 12A.
Abstract:
A system is presented. The system includes an absorption cell (104) filled-with a gas-mixture (102), a mirror-cum-window (106) comprising a first portion that acts as a first mirror (114) and a second portion that acts as a first window (116), a second mirror (110), a second window (118), a plurality of radiation sources (120,122,124) to generate a plurality of light beams (126,128,130) directed into the absorption cell (104) through the first window (116) followed by reflection of the plurality of light beams between the first mirror (114) and the second mirror (110) to irradiate the gas mixture (102) resulting in generation of a plurality of transmitted light beams (132,134) passing out of the absorption cell (104) through the second window (118), a detector (136) that detects at least one characteristic of the plurality of transmitted light beams (132,134) resulting in generation of one or more response signals (137,138), and a processing subsystem (140) that analyzes the gas-mixture at least based on the one or more response signals (137,138).