Abstract:
A system (110) for comparative interferogram spectrometry includes an interferometer (200) configured to generate interferograms (400, 401, 500) from incident radiation (360) from a target region (120), an interferogram database (220) containing stored interferograms, and a processing subsystem (210) configured to receive the generated interferograms and compare the received interferograms to the stored interferograms.
Abstract:
The present invention is directed to a method for obtaining appearance characteristics of a target coating containing effect pigments. The present invention is also directed to a method for comparing appearances of two or more coatings by comparing the appearance characteristics. The present invention is further directed to a system for obtaining appearance characteristics of one or more coatings and comparing said coating appearances.
Abstract:
An optical characterisation system is described for characterising optical material. The system typically comprises a diffractive element (104), a detector (106) and an optical element (102). The optical element (102) thereby typically is adapted for receiving an illumination beam, which may be an illumination response of the material. The optical element (102) typically has a refractive surface for refractively collimating the illumination beam on the diffractive element (104) and a reflective surface for reflecting the diffracted illumination beam on the detector (106). The optical element (102) furthermore is adapted for cooperating with the diffractive element (104) and the detector (106) being positioned at a same side of the optical element (102) opposite to the receiving side for receiving the illumination beam.
Abstract:
The invention relates generally to the field of substance and material detection, inspection, and classification at wavelengths between approximately 200 nm and approximately 1800 nm. In particular, a handheld Enhanced Photoemission Spectroscopy ("EPS") detection system with a high degree of specificity and accuracy, capable of use at small and substantial standoff distances (e.g., greater than 12 inches) is utilized to identify specific substances (e.g., controlled substances, illegal drugs and explosives, and other substances of which trace detection would be of benefit) and mixtures thereof in order to provide information to officials for identification purposes and assists in determinations related to the legality, hazardous nature and/or disposition decision of such substance(s).
Abstract:
A color measurement device designed for use at various stages of an industrial process is provided. The device offers enhanced insensitivity to ambient light, measurement depth variations, and/or ambient or environmental temperature variations. The device may be embodied as an LED-based, non-contact color measurement spectrophotometer. Over- illumination in full-spectrum of the target object facilitates effective color measurements over varying depths of view. Collected light is measured at discrete wavelengths across the entire visual spectrum. The hardened, rugged design and packaging of the measurement device allows color measurement to be performed at various stages of industrial processes wherein the device can add value by enabling enhanced detection of color errors.
Abstract:
The disclosure relates to a portable system having a fiber array spectral translator ("FAST") for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
Abstract:
An object is to represent the difference of colors of a vital tooth and a tooth sample in a highly precise manner and to compare the colors in a relatively easy manner. The invention provides a dental colorimetry apparatus including a shade-guide-information storage unit configured to store acquired image data of a tooth sample and colorimetric information of each pixel acquired on the basis of the acquired image data; a pixel extracting unit configured to acquire reference colorimetric information used as a reference when carrying out a comparison with the vital tooth, to compare the reference colorimetric information and the colorimetric information for each pixel of the tooth sample, and to extract pixels whose comparison results satisfy a predetermined condition; an image-generating unit configured to create a sample comparison image in which a third pixel group including pixels extracted by the pixel extracting unit and a fourth pixel group including pixels that are not extracted are represented by different colors; and a display device configured to display the sample comparison image created by the image-generating unit.
Abstract:
Systems, methods, processes, and devices are disclosed for measuring and matching the color and appearance of decorative artifacts to facilitate product selection, such as in a retail store or other commercial environment.
Abstract:
Apparatus and methods for hyperspectral imaging analysis that assists in real and near-real time assessment of biological tissue condition, viability, and type, and monitoring the above over time. Embodiments of the invention are particularly useful in surgery, clinical procedures, tissue assessment, diagnostic procedures, health monitoring, and medical evaluations, especially in the detection and treatment of cancer.
Abstract:
A system provides light of selectable spectral characteristic (e.g. a selectable color combination of light), for luminous applications such a signage and indicator lights (10). An optical integrating cavity (11) combines energy of different wavelengths from different sources, typically different colored LEDs. The cavity has a diffusively reflective interior surface (29) and an aperture (17) for allowing emission of combined light. Control of the intensity of emission of the sources sets the amount of each wavelength of light in the combined output and thus determines a spectral characteristic of the light output through the aperture. A deflector (25) shaped like a number, character, letter, or other symbol, may be coupled to a similarly shaped aperture. By combining several such fixtures, it is possible to spell out words and phrases, with selectable color lighting. Disclosed fixture examples use an extruded body member with appropriately located reflective surfaces to form both the cavity and deflector.