Abstract:
A cleaning robot system (5) includes a robot (10) and a robot maintenance station (100,1100,1200,1300,1400). The robot (10) includes a chassis (31), a drive system (45) configured to maneuver the robot (10) as directed by a controller (49), and a cleaning assembly (43) including a cleaning assembly housing (40) and a driven cleaning roller (60,65). The robot maintenance station (100,1100,1200,1300,1400) includes a station housing (120) and a docking platform (122) configured to support the robot (10) when docked. A mechanical agitator (510,520) engages the roller (60,65) of the robot (10) with the robot (10) docked. The agitator (510,520) includes an agitator comb (511) having multiple teeth (512) configured to remove accumulated debris from the roller (60,65) as the agitator comb (511) and roller (60,65) are moved relative to one another.; The robot maintenance station (100,1100,1200,1300,1400) includes a collection bin (150) arranged to receive and hold debris removed by the mechanical agitator (510,520).
Abstract:
A robot cleaner (100) includes a main brush (160) to sweep or scatter dust off a floor, a main brush motor to rotate the main brush, a Revolution Per Minute (RPM) detector to detect an RPM of the main brush motor, and a control unit to determine a type of floor according to the RPM of the main brush motor acquired by the RPM detector and control an operation of the robot cleaner (100) based on the determined type of floor. A carpet mode to clean only a carpet area and a hard floor mode to clean a hard floor area excluding the carpet area are given based on detected information relating to the material of a floor, which enables partial cleaning with respect to a cleaning area selected by a user and adjustment in the number of cleaning operations or the intensity of cleaning according to the material of the floor.
Abstract:
A docking station 20 and a robot 22 for docking therein, include corresponding transmission parts. These transmission parts are for the transmission of energy, such as electricity, for recharging the robot, and/or signals, for operating the robot, the energy and/or signals passing between the docking station and the robot. In examples described, the transmission parts may include a magnetic contact so that the transmission parts are magnetically attracted to each other.
Abstract:
A docking station 20 and a robot 22 for docking therein, include corresponding transmission parts. These transmission parts are for the transmission of energy, such as electricity, for recharging the robot, and/or signals, for operating the robot, the energy and/or signals passing between the docking station and the robot. In examples described, the transmission parts may include a magnetic contact so that the transmission parts are magnetically attracted to each other.
Abstract:
A docking station 20 and a robot 22 for docking therein, include corresponding transmission parts. These transmission parts are for the transmission of energy, such as electricity, for recharging the robot, and/or signals, for operating the robot, the energy and/or signals passing between the docking station and the robot. In examples described, the transmission parts may include a magnetic contact so that the transmission parts are magnetically attracted to each other.
Abstract:
A method of charging a battery of a device (40), the method comprising the steps of: providing a non-charging energy to charging terminals (16) of a charger (10); detecting a presence of a robotic device (40) docked with the charger (10) by recognizing a load formed by a circuit in the charger (10) combined with a complementary circuit in the robotic device (40); and increasing energy to the charging terminals (16) to a charging current to charge the battery.
Abstract:
A method of charging a battery of a device (40), the method comprising the steps of: providing a non-charging energy to charging terminals (16) of a charger (10); detecting a presence of a robotic device (40) docked with the charger (10) by recognizing a load formed by a circuit in the charger (10) combined with a complementary circuit in the robotic device (40); and increasing energy to the charging terminals (16) to a charging current to charge the battery.
Abstract:
A docking station 20 and a robot 22 for docking therein, include corresponding transmission parts. These transmission parts are for the transmission of energy, such as electricity, for recharging the robot, and/or signals, for operating the robot, the energy and/or signals passing between the docking station and the robot. In examples described, the transmission parts may include a magnetic contact so that the transmission parts are magnetically attracted to each other.