Abstract:
Apparatus and method for recovering and arresting an aircraft on a floating platform is disclosed. The aircraft has a fuselage, a wing, and a source of propulsion for propelling the aircraft in flight. During landing approach, an inflatable cushion attached to the fuselage is deployed below the fuselage via inflation. In the inflated condition, a fastening material disposed on a downward facing surface of the cushion is thereby adapted to adhesively contact the floating platform deck so that the forward motion of the aircraft is slowed and arrested. In the preferred embodiment, the fastening material is one of male or female VELCRO.RTM. which is adapted to mate with corresponding VELCRO.RTM. material covering the platform deck.
Abstract:
One embodiment of a coaxial transmission/center hub subassembly for a rotor assembly having ducted, coaxial counter-rotating rotors includes a single stage transmission, a transmission housing, and a center hub support structure that are structurally and functionally interactive. The transmission housing includes upper and lower standpipe housings secured in combination with a middle housing. The single stage transmission includes an input pinion gear rotatably mounted in combination with the middle housing, and upper and lower spiral bevel gears rotatably coupled in combination with the input pinion gear to provide counter-rotation thereof. The spiral bevel gears include integral rotor shafts, respectively, rotatably mounted in the standpipe housings. The hub support structure is configured for securement of the middle housing internally in combination therewith, with respective surfaces thereof in abutting engagement so that dynamic loads of the rotors and thermal loads are directly coupled into the hub support structure via the middle housing while bending moments of the rotors are canceled in the middle housing. The hub support structure has radially extending arms for mounting the coaxial transmission/center hub subassembly in fixed coaxial relation to an airframe structure and for coupling the dynamic and thermal loads to the airframe structure. External surfaces of the standpipe housings function as sliding surfaces for linear motion of swashplate subassemblies to minimize the separation between the rotors so that the airframe structure has a compact aerodynamic and structural envelope. The transmission housing is internally configured to provide a splash lubrication subsystem.
Abstract:
Systems, methods, and devices provide a vehicle, such as an aircraft, with rotors configured to function as a tri-copter for vertical takeoff and landing (“VTOL”) and a fixed-wing vehicle for forward flight. One rotor may be mounted at a front of the vehicle fuselage on a hinged structure controlled by an actuator to tilt from horizontal to vertical positions. Two additional rotors may be mounted on the horizontal surface of the vehicle tail structure with rotor axes oriented vertically to the fuselage. For forward flight of the vehicle, the front rotor may be rotated down such that the front rotor axis may be oriented horizontally along the fuselage and the front rotor may act as a propeller. For vertical flight, the front rotor may be rotated up such that the front rotor axis may be oriented vertically to the fuselage, while the tail rotors may be activated.
Abstract:
A hybrid-electric aerial vehicle is disclosed comprising: an airframe; a plurality of longitudinal booms extending radially from the airframe; a passively charged internal combustion engine operatively coupled with a fuel tank, a generator operatively coupled with the passively charged internal combustion engine; a battery bank operatively coupled with the generator; and a plurality of motors. The passively charged internal combustion engine has an intake engine valve, an exhaust engine valve, and a combustion chamber, wherein the intake engine valve is delayed to provide an expansion ratio in the combustion chamber that is greater than a compression ratio in the combustion chamber. Each of said plurality of motors may be positioned at a distal end of one of said plurality of longitudinal booms and be operatively coupled with a propeller, wherein the plurality of motors is electrically coupled with the battery bank and the generator.
Abstract:
An unmanned aerial vehicle comprising at least one rotor motor. The rotor motor is powered by a micro hybrid generation system. The micro hybrid generator system comprises a rechargeable battery configured to provide power to the at least one rotor motor, a small engine configured to generate mechanical power, a generator motor coupled to the small engine and configured to generate AC power using the mechanical power generated by the small engine, a bridge rectifier configured to convert the AC power generated by the generator motor to DC power and provide the DC power to either or both the rechargeable battery and the at least one rotor motor, and an electronic control unit configured to control a throttle of the small engine based, at least in part, on a power demand of at least one load, the at least one load including the at least one rotor motor.
Abstract:
An unmanned aerial vehicle comprising at least one rotor motor. The rotor motor is powered by a micro hybrid generation system. The micro hybrid generator system comprises a rechargeable battery configured to provide power to the at least one rotor motor, a small engine configured to generate mechanical power, a generator motor coupled to the small engine and configured to generate AC power using the mechanical power generated by the small engine, a bridge rectifier configured to convert the AC power generated by the generator motor to DC power and provide the DC power to either or both the rechargeable battery and the at least one rotor motor, and an electronic control unit configured to control a throttle of the small engine based, at least in part, on a power demand of at least one load, the at least one load including the at least one rotor motor.
Abstract:
The invention relates to an aircraft comprising a fuselage (1), a plurality of propeller units (3) that can pivot in relation to the fuselage (1), and wings (5) that can pivot at least partially in relation to the fuselage (1) and independently of the propeller units (3).
Abstract:
An Unmanned Aerial Vehicle (UAV) for use in military and civilian functions, including a UAV being optimized by utilizing a front and a rearmost engine positioning in addition to an engine operating system for maximum fuel efficiency and performance.
Abstract:
An unmanned aerial vehicle comprising at least one rotor motor. The rotor motor is powered by a micro hybrid generation system. The micro hybrid generator system comprises a rechargeable battery configured to provide power to the at least one rotor motor, a small engine configured to generate mechanical power, a generator motor coupled to the small engine and configured to generate AC power using the mechanical power generated by the small engine, a bridge rectifier configured to convert the AC power generated by the generator motor to DC power and provide the DC power to either or both the rechargeable battery and the at least one rotor motor, and an electronic control unit configured to control a throttle of the small engine based, at least in part, on a power demand of at least one load, the at least one load including the at least one rotor motor.
Abstract:
Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing (“VTOL”) and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.