Abstract:
The present invention provides a dynamic spectral imaging system with spectral band zooming and selection capability that can adapt to different application requirements and significantly reduce the size of the captured spectral image data cube. The imaging system may employ a diffraction grating to disperse the spectral information of the captured image and may further include a dynamic spatial filter at the Fourier plane to select the spectral channel and spectral band width for each spectral image. With a limited fixed spectral channel number, the system can provide both coarse and fine spectral image viewing and capturing.
Abstract:
An apparatus and source arrangement for filtering an electromagnetic radiation can be provided which may include at least one spectral separating arrangement (200) configured to physically separate one or more components (320, 340) of the electromagnetic radiation based on a frequency of the electromagnetic radiation. The apparatus and source arrangement may also have at least one continuously rotating optical arrangement, e.g., a spinning reflector disk scanner (500), which is configured to receive at least one signal that is associated with the one or more components (320, 340). Further, the apparatus and source arrangement can include at least one beam selecting arrangement configured to receive the signal. Rotating disk (500) may comprise reflecting patterns (520) to generate a wavelength scan depending on the rotation frequency of the disk (500).
Abstract:
Application of digital light processor (DLP) systems in monochromotor, spectrophotometer or the like systems to mediate selection of individual wavelengths, and/or to image elected regions of a sample in an imaging ellipsometer, imaging polar imeter, imaging ref lectometer, imaging spectrophotometer r and/or to provide chopped beams.
Abstract:
The invention is based on a method and a device for identifying properties of moving objects such as articles, materials, layers, inter alia. The data representing the properties of the objects are determined and evaluated by means of a spectral spatially resolved quantitative and/or qualitative analysis in real time. According to the invention, a spatially resolved spectral image of the object region to be measured is generated. Said image, prior to its evaluation, is subjected optically to a spatially resolved spectral masking which permits only selected significant spatially resolved spectral values and/or spectral ranges to pass. Afterwards, said significant spatially resolved spectral values and/or spectral ranges are optically compressed to form a readable data image. By virtue of the combination of the optical masking with an optical data compression, significant spectral data having a plurality of spectral properties can be compressed flexibly to form a new spatially resolved spectral image and the latter can be imaged on a multi- or one-dimensional line. The evaluation of the spectral image of an object takes place very rapidly, such that a high number of parts per second can be identified.
Abstract:
An optical spectrometer distinguishes ambiguity between different wavelength constituent components present in incident light. A spatial filter in the spectrometer spatially filters the incident light. A dispersion system receives the spatially filtered light and disperses images of the spatial filter in a wavelength dependent fashion such that two or more wavelength-specific images at least partially overlap at a detector system. The detector system comprises a detector array and processor that detects and processes the dispersed light to remove ambiguity between one or more of the overlapping images. The detector array may detect coded aperture images associated with a coded aperture spatial filter defined by a coded aperture function, and the processor may process the detector array output signals using an analysis function that complements the coded aperture function. The detector system may filter the spatial filter images and electronically process the resulting detector array output signals.
Abstract:
A spectrometer system includes a thermal light source for illuminating a sample, where the thermal light source includes a filament that emits light when heated. The system additionally includes a spectrograph for measuring a light spectrum from the sample and an electrical circuit for supplying electrical current to the filament to heat the filament and for controlling a resistance of the filament. The electrical circuit includes a power supply that supplies current to the filament, first electrical components that sense a current through the filament, second electrical components that sense a voltage drop across the filament, third electrical components that compare a ratio of the sensed voltage drop and the sensed current with a predetermined value, and fourth electrical components that control the current through the filament or the voltage drop across the filament to cause the ratio to equal substantially the predetermined value.
Abstract:
A hyperspectral imaging system and methods thereof especially useful in fields such as medicine, food safety, chemical sensing, and agriculture, for example. In one embodiment, the hyperspectral imaging module includes a light source for illuminating the object in a light-tight housing. The light is spectrally filtered prior to illuminating the object. The light leaving the object is then directed through imaging optics to an imaging array. In another embodiment, the object of interest is illuminated by ambient light which is then compensated by a light modulation system. In this embodiment, the light emitted from the object is spectrally filtered prior to reaching the imaging array.
Abstract:
An encoder spectrograph is used to analyze radiation from one or more samples in various configurations. The radiation is analyzed by spatially modulating the radiation after it has been dispersed by wavelength or imaged along a line. Dual encoder spectrographs may be used to encode radiation using a single modulator.
Abstract:
An encoder spectrograph is used to analyze radiation from one or more samples in various configurations. The radiation is analyzed by spatially modulating the radiation after it has been dispersed by wavelength or imaged along a line. Dual encoder spectrographs may be used to encode radiation using a single modulator.
Abstract:
A spectrograph with a first concave spectrographic diffraction grating is positioned to receive light from an input light source. The first concave spectrographic diffraction grating is configured to provide a diffracted light output dispersing the components of the input light source in a first dispersion direction with a first angular orientation with respect to the plane of the grating. The dispersion forms the input light into an intermediate spectrum. The intermediate spectrum is formed in a focal surface by the once diffracted light. A slit is substantially positioned on the focal surface. A second concave diffraction grating is positioned to receive once diffracted light from the slit and configured to provide a twice diffracted light output, the second concave diffraction grating dispersing the components of the input light source in a second diffraction direction with a second angular orientation with respect to the plane of the grating. The second dispersion angular orientation is different from the first dispersion angular orientation. The second dispersion forms the input light into an output spectrum.