Abstract:
The present invention relates to optical devices for imaging and spectroscopic applications where optical field curvature is a predominant characteristic. In particular, the invention relates to imaging optics and an optical device for mapping a curved image field. The optical device for mapping a curved image field comprises a focal plane array 20 having a plurality of light processing elements 21 and a focal plane adapter 110 mounted in front of the focal plane array 20 configured to transmit the curved image field to the light processing elements 21 of the focal plane array 20. The focal plane adapter 110 comprises a plurality of waveguides 111 wherein first ends of the waveguides 111 facing the incident curved image field are arranged on a curved surface 12, the curved surface 12 being adapted to a profile of an optical field curvature of the curved image field so that the plurality of waveguides 111 divide the curved image field along a curved focal plane of the image field into a plurality of image segments. The second ends of the waveguides 111 are allocated to the light processing elements 21 to map the plurality of image segments onto the allocated light processing elements 21.
Abstract:
The present invention relates to a color measurement device for measuring the color of a target object, the device comprising: an illumination system including an illumination source having at least a white portion in combination with a chromatic portion, the illumination system being structured to generate light in all portions of the visible spectrum and provide spatially uniform illumination at a given target distance from the target object sufficient to spatially over-illuminate a predetermined target area on the target object, wherein the illumination system further comprises an illumination lens structured for operative association with the illumination source, the illumination lens comprising at least one optically fast lens, and at least one spatial intensity filter positioned in operative association with the illumination lens; an optical collection system structured for non-contact color measurement of the target object, wherein the optical collection system is positioned in the device to function at a distance from the target object and receive light reflected therefrom, the optical collection system further comprising an image-based collection optic having a field stop at an image plane to define a target area plane for the target object; and a color engine in communication with the optical collection system configured for spectrally analyzing light detected by the optical communication system.
Abstract:
An image processing system is used for dentistry. Upon creating a false tooth of a patient (59), a plurality of illuminating light of LEDs with different wavelengths emit light and a photographing apparatus (1A) photographs a tooth portion of the patient (59), thereby obtaining image data. The image data is sent to a dentistry filing system (2A) serving as a processing apparatus, and color reproducing data is obtained by calculation. The color reproducing data is sent to a dentistry factory (55) via a public line. Data is searched from a database (56) for calculating a ceramic compounding ratio, compound data of the ceramic false tooth is obtained, matching the color of the tooth portion of the patient (59), and the false tooth approximate to the tooth color of the patient (59) is created. The photographing apparatus has a control unit (18) which switches between a spectroscopic image capturing mode and a moving image capturing mode.
Abstract:
Since the spectroscopy module 1 is provided with a plate-shaped body portion 2, the body portion 2 is made thin so that the spectroscopy module 1 can be downsized. Further, since the body portion 2 is formed in a plate shape, for example, a wafer process is used to produce the spectroscopy module 1. In other words, a lens portion 3, a diffracting layer 4, a reflecting layer 6 and a light detecting element 7 are provided in a matrix form on a glass wafer, which can be made into many body portions 2. Then, the glass wafer is subjected to dicing, thus making it possible to produce many spectroscopy modules 1. In this way, it is possible to produce the spectroscopy module 1 easily on a large scale.
Abstract:
A spectrophotometer has a first photodetector (24) and a second photodetector (25) which is displaced spatially from the first photodetector in the direction of increasing wavelength in the spectrum. At any given time the second photodetector receives light at a wavelength which is substantially greater than that being received simultaneously by the first photodetector at that time. The first photodetector has a first range of wavelengths over which it is operable and a first upper operating limit, and the second photodetector has a second range of wavelengths over which it is operable and a second upper operating limit, the second range overlapping the first range and the second upper operating limit being greater than the first upper operating limit. Thus the range of operation is extended, and data in two different ranges is processed simultaneously. The spectrophotometer comprises a housing (1) containing a light source (11), a monochromator (15, 16, 18) and the photodetectors, there being a fibre optic connected to a probe (2) for transmitting light from the light source to a sample to be analysed and receiving light from the sample. Optical components are mounted to a chassis (26) of the housing rigidly, the chassis being connected to the housing by shock absorbing mounts (28, 29). The light source is mounted to the housing by means of an adjuster (24) providing for adjustment laterally with respect to the optical axis of the light source.
Abstract:
Ein zur Ausmessung von Farbeigenschaften eines Messobjekts bestimmter fotoelektrischer Farbmesskopf umfasst eine Beleuchtungseinrichtung zur Beaufschlagung des Messobjekts mit Beleuchtungslicht und eine wellenlängenbereichsselektive fotoelektrische Empfängereinrichtung (40), welche vom beleuchteten Messobjekt remittiertes Messlicht auffängt und in entsprechende elektrische Messsignale umwandelt. Die Beleuchtungseinrichtung umfasst eine im Wesentlichen weiss strahlende Leuchtdiode (30) und Mittel (60) zur Begrenzung des Einfallswinkelbereichs, so dass das Messobjekt Licht nur unter einem für Farbmessanwendungen standardisierten Einfallswinkelbereich von vorzugsweise 45°+/-5-10° empfängt. Die Empfangereinrichtung weist ein aus einer Vielzahl von zeilenförmig angeordneten fotoelektrischen Sensor-Pixeln bestehendes Sensor-Feld auf und die Sensor-Pixel sind durch vorgeschaltete Farbfilter (420) auf unterschiedliche Wellenlängenbereiche sensibilisiert. Das Sensor-Feld ist als Chip ausgebildet und ist zusammen mit der Leuchtdiode (30) auf einer gemeinsamen heiterplatte (1) montiert. Die Farbfilter (420) sind auf einem länglichen transparenten Filterträger angebracht und unmittelbar über dem Lichteintrittsfenster des Sensor-Felds montiert. Das Sensor-Feld ist zusammen mit den Farbfiltern als flache Sandwich-Struktur ausgebildet und von einem Schutzrahmen umschlossen und mit einer opaken Dichtungsmasse vergossen. Der Farbmesskopf hat ein extrem kleines Bauvolumen und ist mit vergleichsweise geringem Konstruktionsaufwand herstellbar.
Abstract:
Eine Vorrichtung (10) zur Messung einer Spektralverteilung eines mit einer Druckeinrichtung hergestellten Druckerzeugnisses (12) mit einem Leuchtmittel (20) zum Beleuchten des Druckerzeugnisses (12), einem optoelektronischen Messmittel (32) zum Messen des Remissionswertes eines Abschnitts des Spektrums des vom Druckerzeugnis (12) remittierten Lichtes (26), einem optischen Dispersionsmittel (28) zum Dispergieren der Wellenlängen des remittierten Lichtes (26) und einer für das Dispersionsmittel (28) maßgeblichen Lichteintrittsspaltebene, ist erfindungsgemäß dadurch gekennzeichnet, dass die für das Dispersionsmittel (28) maßgebliche Lichteintrittsspaltebene durch die Oberfläche des zu untersuchenden Druckerzeugnisses (12) geschaffen ist.
Abstract:
A method for providing an intensity or brightness measurement using a digital image-capturing device comprising: selecting a target area within a field of view of the image-capturing device, the target area containing pixels; determining the brightness of pixels in the target area; accumulating the brightness values of the pixels in the target area; and determining a pixel value representative of the pixels in the target area. A device for making color measurements comprising an image-capture device, a processor or logic device, and a memory location for accumulating color data, and the processor or logic device is programmed to perform color measurements by accumulating the data for pixels located in the target area in memory, and determining a representative color value.
Abstract:
An image processing system is used for dentistry. Upon creating a false tooth of a patient (59), a plurality of illuminating light of LEDs with different wavelengths emit light and a photographing apparatus (1A) photographs a tooth portion of the patient (59), thereby obtaining image data. The image data is sent to a dentistry filing system (2A) serving as a processing apparatus, and color reproducing data is obtained by calculation. The color reproducing data is sent to a dentistry factory (55) via a public line. Data is searched from a database (56) for calculating a ceramic compounding ratio, compound data of the ceramic false tooth is obtained, matching the color of the tooth portion of the patient (59), and the false tooth approximate to the tooth color of the patient (59) is created.
Abstract:
Percentage concentrations of constituents or color components of a sample are determined using a spectral analyzer with a wide illumination spot size and detector. The analyzer irradiates the sample, picks up diffuse reflectance of individual wavelengths from the sample and spatially separates the diffuse reflectance into a response at individual wavelengths. The result is to simultaneously detect the intensities of the individual wavelengths in parallel from the sample being analyzed. Percentage constituents of a composite substance can be determined or, alternatively, the components of color in a sample can be determined by analyzing wavelengths of reflected light.