Abstract:
The present invention relates to a power supply for a field emission light source. The novel power supply allows for a reduction in size as well as allowing for improvements relating to power factor and efficiency. The size reduction further allows the power supply to efficiently be integrated together with the field emission light source forming a lighting device.
Abstract:
The present invention relates to a method for manufacturing a plurality of nanostructures comprising the steps of providing a plurality of protruding base structures (104) arranged on a surface of a first substrate (102), providing a seed layer mixture, comprising a solvent/dispersant and a seed material, in contact with the protruding base structures, providing a second substrate arranged in parallel with the first substrate adjacent to the protruding base structures, thereby enclosing a majority of the seed layer mixture between the first and second substrates, evaporating the solvent, thereby forming a seed layer (110) comprising the seed material on the protruding base structures, removing the second substrate, providing a growth mixture, comprising a growth agent, in contact with the seed layer, and controlling the temperature of the growth mixture so that nanostructures (114) are formed on the seed layer via chemical reaction in presence of the growth agent.
Abstract:
The present disclosure generally relates to field emission cathode structure for a field emission arrangement, specifically adapted for enhance reliability and prolong the lifetime of the field emission arrangement by arranging a getter element underneath a gas permeable portion of the field emission cathode structure. The present disclosure also relates to a field emission lighting arrangement comprising such a field emission cathode structure and to a field emission lighting system.
Abstract:
The present invention generally relates to a method for operating a plurality of field emission light sources, specifically for performing a testing procedure in relation to a plurality of field emission light sources manufactured in a chip based fashion. The invention also relates to a corresponding testing system.
Abstract:
The present invention generally relates to a field emission light source and specifically to a field emission light source adapted to emit ultraviolet (UV) light. The light source has a UV emission member provided with an electron-excitable UV emitting material. The material is at least one of LuPO3:Pr3+, Lu2Si2O2:Pr3+, LaPO4:Pr3+, YBO3:Pr3+ and YPO4:Bi3+.
Abstract:
The present invention generally relates to a field emission light source and specifically to a miniaturized field emission light source that is possible to manufacture in large volumes at low cost using the concept of wafer level manufacturing, i.e., a similar approach as used by integrated circuits (IC) and microelectromechanical systems (MEMS). The invention also relates to a lighting arrangement comprising at least one field emission light source.
Abstract:
The present invention relates to a method for controllably growing ZnO nanowires, for example to be used in relation to field emission lighting. In particular, the invention relates to a method of controlling thermal oxidation conditions to achieve steady-state conditions between an oxygen consumption rate by a growing oxide on a surface of a structure and the decomposition rate of the oxygen-carrying species within the chamber. The invention also relates to a corresponding field emission cathode.
Abstract:
The present invention relates to a method for controllably growing ZnO nanowires, for example to be used in relation to field emission lighting. In particular, the invention relates to a method of controlling thermal oxidation conditions to achieve steady-state conditions between an oxygen consumption rate by a growing oxide on a surface of a structure and the decomposition rate of the oxygen-carrying species within the chamber. The invention also relates to a corresponding field emission cathode.
Abstract:
The present invention generally relates to a field emission light source and specifically to a field emission light source adapted to emit ultraviolet (UV) light. The light source has a UV emission member provided with an electron-excitable UV emitting material. The material is at least one of LuPO3:Pr3+, Lu2Si2O2:Pr3+, LaPO4:Pr3+, YBO3:Pr3+ and YPO4:Bi3+.