Abstract:
A disclosed method for manufacturing a semiconductor terminal includes a step of forming a buffer layer on a silicon substrate and a step of forming a nitride semiconductor layer on the buffer layer. The buffer layer includes a first layer which includes AlxInyGa1-x-yN (0
Abstract translation:所公开的半导体端子的制造方法包括在硅衬底上形成缓冲层的步骤和在缓冲层上形成氮化物半导体层的步骤。 缓冲层包括第一层,其包括Al x In y Ga 1-x-y N(0≤x≤1,0<= y <=1,0,0≤x+y≤1),其中晶格常数为LP1, 小于硅衬底的晶格常数LP0; 第二层,其形成在第一层上并且包括Al x In y Ga 1-x-y N(0 <= x <1,0
Abstract:
PURPOSE: A power device and a method for manufacturing the same are provided to improve withstand voltage characteristic by using an electric field dispersion unit. CONSTITUTION: A nitride laminate(20) is formed on a substrate(10). A source electrode(S1), a drain electrode(D1) and a gate electrode(G1) are formed on the nitride laminate. An electric field dispersion unit(25) is formed in the rear surface or a part of the nitride laminate. A bonding metal layer includes a first bonding metal layer(15) and a second bonding metal layer(17).
Abstract:
PURPOSE: A light emitting device and manufacturing method thereof are provided to have a reflecting layer embedded pattern, thereby increasing light emitting efficiency. CONSTITUTION: An uneven pattern includes a plurality of grooves and a mesa located between the grooves. A first reflective film(23) is included on a side of a groove. An n-type clad layer is placed on the uneven pattern. An active layer(35) is placed on the n-type clad layer. A p-type cladding layer is placed on the active layer. A first electrode is placed on one side of a substrate. A second electrode is placed on one side of the p-type cladding layer. A buffer layer(25) is placed on the mesa and the first reflective film.
Abstract:
PURPOSE: A light emitting apparatus and a manufacturing method thereof are provided to improve the light extraction efficiency by reducing the light absorption of a silicon substrate by comprising a reflective buffer layer including a distributed brag reflection layer. CONSTITUTION: A metallic buffer layer(132) is formed on a silicon substrate(110). A patterned distributed Brag reflector layer(134) is formed on the metallic buffer layer. The metallic buffer layer is patterned in the same pattern as the distributed Bragg reflector layer. An XY material layer(136) is formed on the patterned distributed Bragg reflector layer.
Abstract:
PURPOSE: A substrate structure and a manufacturing method of the same are provided to prevent Si from being melt-back through Ga by oxidizing the surface of a substrate and a pattern region after forming the pattern region. CONSTITUTION: A substrate structure comprises a substrate(20) and a buffer layer(22) The buffer layer is formed on the substrate by a certain pattern. A buffer layer is supported by a substrate protrusion which is formed after the surface of the substrate is etched. The bottom of a buffer layer which is not contacted with the substrate protrusion is exposed to outside. A nitride semiconductor layer is formed through lateral growth which is rapider vertical growth.
Abstract:
A method for fabricating a self aligned three dimensional transistor is provided to limit the height of a gate by using a mask layer as a planarization stop layer in a planarization process. A mask having a shape of a source forming area, a drain forming area, and a channel forming area is formed on a substrate including a silicon layer on a first insulating layer. The silicon layer is patterned by the mask. The mask is etched on the channel forming area. An undercut is formed in the lower part of the channel forming area. A nano wire channel(118) is formed by thermally oxidizing the channel forming area. A gate oxide layer(160) is formed on the nano wire channel. A gate material covering the mask is deposited on the substrate. A gate is formed by planarizing the gate material using the mask as a CMP stop layer. The mask is removed. A source(115') and a drain(117') are formed by irradiating the impurity from the substrate.
Abstract:
A nanowire formation method is provided to control easily size and forming location of nanowire and not to move Nanowire to another substrate in order to manufacture semiconductor device. A nanowire formation method comprises steps of: forming SiyGe1-y layer patterned on base layer; performing oxidation process for the patterned SiyGe1-y layer; and forming the oxide layer and nanowire. The step of forming the patterned SiyGe1-y layer includes steps of: preparing lamination structure comprising an insulating layer(10), an Si layer(20) and an SixGe1-x layer(SG1); diversifying the Si layer to the SiyGe1-y layer by performing the oxidation process for the SixGe1-x layer; and patterning the SiyGe1-y layer.
Abstract:
An electrically-pumped high power vertical cavity surface emitting laser is provided to obtain a high output in single mode by distributing uniformly carriers. An electrically-pumped high power vertical cavity surface emitting laser includes a first DBR mirror(20), an active layer(30) formed on the first DBR mirror, a second DBR mirror(40) formed on the active layer, and a capping layer(70) formed on the second DBR mirror. The second DBR mirror includes low refractive layers(41) of n number, a high refractive layer(43) inserted between the low refractive layers, and a carrier spreading layer inserted between the low refractive layers and the high refractive layer in order to distribute uniformly carriers.
Abstract:
본 발명에 따른 반도체 기판과, 상기 반도체 기판 상에 성장된 하부 클래드와, 상기 하부 클래드 상에 성장된 상부 클래드로 이루어진 반도체 광소자는 광을 생성 및 증폭시키기 위해서 상기 하부 및 상부 클래드 사이에 성장된 활성층을 포함하는 이득 영역과, 상기 하부 및 상부 클래드 사이에 상기 활성층으로부터 연장되게 성장된 도파층을 포함함으로써 상기 이득 영역에서 생성된 상기 광의 모드 크기를 변환시켜서 출력하기 위한 광모드 크기 변환 영역을 포함하며, 상기 광모드 크기 변환 영역의 도파층은 상기 활성층으로부터 그 두께가 점차적으로 작아지게 성장되며, 상기 상부 클래드는 상기 이득 영역을 포함하는 상기 반도체 광소자의 일단으로부터 상기 광모드 크기 변환 영역을 포함하는 상기 반도체 광소자의 타단으로 갈수록 그 폭이 좁아지는 테이퍼 구조를 갖도록 식각된다. 광모드 변환, 반도체 광소자, 이득 영역
Abstract:
본 발명은 유기금속화학기상증착법에 의한 선택영역 성장방법에 관한 것이다. 본 발명은 (001) 결정면을 갖는 반도체 기판 위에 예정된 상기 선택영역의 폭보다 넓은 폭의 제1 윈도우를 갖는 제1 마스크 패턴과, 상기 제1 윈도우 가장자리에서의 상기 Ⅲ족 반도체 원료가스의 표면이동을 차단하는 차단영역을 형성하기 위한 제2 윈도우를 갖도록 상기 제1 마스크 패턴과 이격 배치되며 예정된 상기 선택영역의 폭과 동일한 폭의 제3 윈도우를 갖는 제2 마스크 패턴을 형성하는 과정과; 상기 제2 윈도우 및 제3 윈도우에 의해 노출된 상기 반도체 기판 위에 유기금속화학기상증착법에 의한 반도체 성장층을 성장하는 과정을 포함하여 이루어짐을 특징으로 한다. 선택영역 성장, 유기금속화학기상증착법, 표면 이동