소수성 모노리스형 실리카 에어로젤의 제조방법
    35.
    发明公开
    소수성 모노리스형 실리카 에어로젤의 제조방법 有权
    HYPOPHOBIC MONILITH型二氧化硅气球的制备方法

    公开(公告)号:KR1020130123942A

    公开(公告)日:2013-11-13

    申请号:KR1020120047484

    申请日:2012-05-04

    CPC classification number: C07F7/188

    Abstract: The present invention relates to a method for dipping monolith type silica aerogel synthesized in a alkylsilane solution which is a dipping solution using a alkoxide precursor and provides a method for preparing hydrophobic monolith type silica aerogel, wherein the method includes a step of making hydrophobic surface and inside of the monolith type silica wet gel. According to the present invention, hydrophobicity can be rapidly and economically given to monolith type silica aerogel in a simple way using a small amount of alkyl silane, the shrinkability of the hydrophobic monolith type silica aerogel is reduced, allows manufacture in a semi-transparent form, low thermal conductivity which is similar to the hydrophilic silica aerogel can be maintained, and application as a heat insulation plate is possible due to improved hydrophobicity and thermal insulation. [Reference numerals] (AA) Monolith type wet gel producing step;(BB) Hydrogenating step using a dipping solution;(CC) Supercritical drying step;(DD) Hydrophobic silica aerogel

    Abstract translation: 本发明涉及一种在烷基硅烷溶液中合成的整料型二氧化硅气凝胶的方法,该烷基硅烷溶液是使用醇盐前体的浸渍溶液,并提供制备疏水整体式二氧化硅气凝胶的方法,其中该方法包括制备疏水性表面和 在整体式硅胶湿凝胶的内部。 根据本发明,通过使用少量的烷基硅烷以简单的方式可以快速且经济地给予整体式二氧化硅气凝胶,疏水整体式二氧化硅气凝胶的收缩性降低,允许以半透明形式制造 可以保持与亲水性二氧化硅气凝胶相似的低导热性,并且由于疏水性和绝热性的改善,作为隔热板的应用成为可能。 (AA)单片式湿凝胶生产步骤;(BB)使用浸渍溶液的氢化步骤;(CC)超临界干燥步骤;(DD)疏水性二氧化硅气凝胶

    구아이아콜로부터 고수율의 바이오연료를 제조하는 방법
    36.
    发明公开
    구아이아콜로부터 고수율의 바이오연료를 제조하는 방법 有权
    从GUAIACOL制备高产生物素的方法

    公开(公告)号:KR1020130017250A

    公开(公告)日:2013-02-20

    申请号:KR1020110079566

    申请日:2011-08-10

    CPC classification number: Y02E50/13 Y02P30/20 C10G3/00 B01J23/40 C07C4/06 C10L1/02

    Abstract: PURPOSE: A manufacturing method is provided to offer a manufacturing method of high-yield biofuel by hydrogenation-dehydration reaction of guaiacol using bifunctional catalyst and using biomass as a source including guaiacol. CONSTITUTION: A manufacturing method of biofuel includes a stage of injecting bifunctional catalyst including reaction solution including guaiacol, metal catalyst and acid catalyst into a reactor; a stage of cleaning a reactor and inside of a pipe connected with the reactor; a stage of increasing entire pressure of hydrogen and reaction solution by injecting hydrogen into the reactor; a stage of mixing hydrogen and reaction solution; a stage of progressing hydrogenation dehydration reaction; a stage of cooling the reactor; and a stage of collecting and analyzing a created product inside of the reactor. The metal catalyst is a metal nano particle for hydrogenation. The metal catalyst is one or alloy consisting of more than two of a group consisting of Pt, Pd, Ru, Ir and Rh. The acid catalyst is an acid catalyst for dehydration, is porous or non-porous catalytic converter reacting with a metal catalyst and an acid group is present on the surface of the catalytic converter. The catalytic converter is selected more than one of a group consisting of silica-alumina complex oxide, alumina, an activated carbon, zirconia and silica. The catalytic converter is selectively formed of a group consisting of a bulk, a plate, a powder, a pellet, a ball and an aerogel. The acid group is generated after processing an inorganic acid selected from a group consisting of a nitric acid, a sulfuric acid and a hydrochloric acid. The content of the metal catalyst ranges from 0.1 to 20 weight% based on weight of the catalytic converter. [Reference numerals] (AA) Guaiacol conversion rate or product yield(water%); (BB) Rh/silica-alumina, 20 minutes; (CC) Rh/silica-alumina, 40 minutes; (DD) Rh/silica-alumina, 1 hour; (EE) Rh/silica-alumina, 2 hours; (FF) Guaiacol conversion rate; (GG) Cyclohexane yield; (HH) Cyclohexanol yield; (II) Cyclohexanone yield; (JJ) 2-methoxy cyclohexanone yield; (KK) Phenol yield

    Abstract translation: 目的:提供一种制造方法,通过双功能催化剂和使用生物质作为来源包括愈创木酚的方法,通过愈创木酚的氢化 - 脱水反应提供高产率生物燃料的制造方法。 构成:生物燃料的制造方法包括将包含愈创木酚,金属催化剂和酸催化剂的反应溶液的双功能催化剂注入反应器的阶段; 清洁反应器和与反应器连接的管道内部的阶段; 通过将氢气注入反应器来提高氢气和反应溶液的全部压力的阶段; 氢和反应溶液的混合阶段; 进行氢化脱水反应的一个阶段; 冷却反应堆的阶段 以及收集和分析反应堆内部产生的产品的阶段。 金属催化剂是用于氢化的金属纳米颗粒。 金属催化剂是由Pt,Pd,Ru,Ir和Rh组成的组中的两种以上组成的一种或合金。 酸催化剂是用于脱水的酸催化剂,是与金属催化剂反应的多孔或无孔催化转化器,并且在催化转化器的表面上存在酸基团。 催化转化器选自二氧化硅 - 氧化铝复合氧化物,氧化铝,活性炭,氧化锆和二氧化硅中的一种以上。 催化转化器选择性地由本体,板,粉末,丸粒,球和气凝胶组成。 在加工选自硝酸,硫酸和盐酸的无机酸之后产生酸基。 金属催化剂的含量基于催化转化器的重量为0.1-20重量%。 (参考号)(AA)愈创木酚转化率或产率(水%); (BB)Rh /二氧化硅 - 氧化铝,20分钟; (CC)Rh /二氧化硅 - 氧化铝,40分钟; (DD)Rh /二氧化硅 - 氧化铝,1小时; (EE)Rh /二氧化硅 - 氧化铝,2小时; (FF)愈创木酚转化率; (GG)环己烷收率; (HH)环己醇产率; (II)环己酮产率; (JJ)2-甲氧基环己酮产率; (KK)苯酚产率

    유전체 방전과 촉매반응을 이용한 메탄 전환 장치 및 방법
    39.
    发明公开
    유전체 방전과 촉매반응을 이용한 메탄 전환 장치 및 방법 有权
    使用介电放电和催化反应的转化装置和甲烷的方法

    公开(公告)号:KR1020100055575A

    公开(公告)日:2010-05-27

    申请号:KR1020080114366

    申请日:2008-11-18

    CPC classification number: C10K3/04 B01J12/002 B01J23/02 B01J23/10 C10K3/06

    Abstract: PURPOSE: A methane conversion apparatus and a method thereof are provided to secure a high yield of hydrocarbon more than C2, to reduce the selectivity of CO and CO_2, and to process an oxidative dimerization reaction without a high temperature condition. CONSTITUTION: A methane conversion apparatus using a dielectric discharge and a catalytic reaction comprises a dielectric discharge reactor forming a low temperature plasma, and a oxidative dimerization reaction catalyst of methane filled in the inside of the reactor. The dielectric discharge reactor comprises the following: a reaction cylinder(4) including the plasma in the inside; electrodes(5,6) connected to the reaction cylinder; and a power supply unit(7) supplying electricity to the reaction cylinder.

    Abstract translation: 目的:提供甲烷转化装置及其方法以确保高于C2的烃的高产率,以降低CO和CO_2的选择性,并且在没有高温条件下处理氧化二聚反应。 构成:使用电介质放电和催化反应的甲烷转化装置包括形成低温等离子体的电介质放电反应器和填充在反应器内部的甲烷的氧化二聚反应催化剂。 电介质放电反应器包括:在内部包括等离子体的反应缸(4); 连接到反应缸的电极(5,6) 以及向反应缸供电的供电单元(7)。

    합성가스의 조성 제어가 가능한 합성가스 제조 장치 및이를 이용한 합성가스 제조 방법
    40.
    发明授权
    합성가스의 조성 제어가 가능한 합성가스 제조 장치 및이를 이용한 합성가스 제조 방법 失效
    合成气制备装置和控制合成气组成的方法

    公开(公告)号:KR100589202B1

    公开(公告)日:2006-06-14

    申请号:KR1020040094606

    申请日:2004-11-18

    Abstract: 본 발명은 메탄과 함산소화합물(이하, "반응물"로 칭함)로부터 합성가스의 조성 제어가 가능한 수소와 일산화탄소(이하, "합성가스"로 칭함)를 제조하는 장치 및 이를 이용한 합성가스 제조 방법에 관한 것으로, 본 발명의 장치는, 반응물인 메탄과 함산소화합물을 반응기 내부로 도입하기 위한 각각의 인입관(1 및 2), 상기 인입관(1 및 2)을 통해 반응기 내부로 도입하는 상기 반응물의 유량을 제어하여 그 비율을 조절하기 위한 각각의 유량조절밸브(7a 및 7b), 인입관(2)에 연결되고 반응기 중간에 배치되어 반응물이 도입되는 위치를 조절하기 위한 위치조절밸브(8a 내지 8f), 반응기의 몸체를 이루며 유전체의 역할을 하는 반응관(5), 반응기의 내부전극(3), 반응기의 외부전극(4), 상기 내부전극(3) 및 외부전극(4)에 전류를 공급하여 플라즈마를 발생시키기 위한 전원(6), 전류가 통과하는 전선(10 및 11), 전류의 접지부분(12), 및 반응이 완료되어 제조된 생성물(합성가스)을 외부로 배출시키기 위한 배출구(9)를 포함하여 구성되는 것을 특징으로 한다.
    또한, 본 발명의 상기 제조 방법은, 반응물인 메탄과 함산소화합물을 각각의 인입관(1 및 2)을 통해 반응기 내부로 도입하면서 유량조절밸브(7a 및 7b)를 이용하여 유량을 제어하여 그 비율을 조절하는 제 1 단계; 상기 제 1 단계에서 인입관(2)으로 도입되는 반응물을 위치조절밸브(8a 내지 8f)에 의하여 선택된 위치에서 반응기 내부로 도입하는 제 2 단계; 상기 제 1 단계 및 제 2 단계를 수행함과 동시에, 반응기의 내부전극(3)과 반응기의 외부전극(4)에 고전압의 전원(6)을 인가하여 반응관(5) 내부에 플라즈마를 생성시켜 합성가스를 제조하는 제 3 단계; 및 상기 제 3 단계에서 수득된 합성가스를 반응기의 배출구(9)를 통해 외부로 배출하는 제 4 단계를 포함하는 것을 특징으로 한다.
    본 발명의 상압 배리어 방전 반응을 이용하여 반응물인 메탄과 함산소화합물을 함께 반응시켜 합성가스의 조성제어가 가능한 합성가스를 제조하는 장치 및 방법을 이용하면, 저온에서 배리어 방전 플라즈마를 이용하여 메탄과 함산소화합물로부터 합성가스를 제조함에 있어서 다음 단계에서 필요한 조성의 합성가스를 원하는 대로 쉽게 만들 수 있기 때문에, 합성가스를 이용하는 다른 공정에서 합성가스를 사용함에 있어서 수소와 일산화탄소를 따로 구입하여 이용하는 대신 천연가스인 메탄과 이산화탄소로부터 직접 합성할 수 있기 때문에 원료비에 있어 대단히 경제적인 공정을 설계할 수 있을 것이다.
    메탄, 함산소화합물, 수소, 일산화탄소, 합성가스, 배리어 방전, 플라즈마

Patent Agency Ranking