Abstract:
PURPOSE: A method for preparing biodegradable covered porous polymer microspheres is provided to control a pore size of microspheres, and to prepare porous polymer microspheres capable of ensuring sustained release control and persistence of a sealed drug. CONSTITUTION: A method for preparing biodegradable covered porous polymer microspheres comprises the steps of: dissolving or suspending a bio-active material in a polymer solution that a biodegradable polymer is dissolved in an organic solvent to prepare a polymer solution containing a bio-active material; adding a hydrogen peroxide-containing compound to the polymer solution and mixing the mixture to prepare water-in-oil type emulsion; emulsifying the water-in-oil type emulsion in a emulsion stabilizer solution to prepare oil-in-water type emulsion; and adding a hydrogen peroxide decomposition catalyst to the oil-in-water type emulsion to degrade hydrogen peroxide and evaporate organic solvent.
Abstract:
A photopolymerizable composite material composition for dental service and orthopedics is provided to improve physical properties, mechanical properties and biocompatibility. A photopolymerizable composite material composition comprises 5-95 wt% of an organic matrix component; and 5-95 wt% of an inorganic filler. The organic matrix component comprises 15-80 wt% of a multifunctional methacrylate prepolymer selected from a bifunctional methacrylate prepolymer represented by the formula 2, a trifunctional methacrylate prepolymer represented by the formula 3, a tetrafunctional methacrylate prepolymer represented by the formula 4 and their mixture; 5-50 wt% of a diluent; 1-40 wt% of a polymerization monomer; 0.1-10 wt% of a photoinitiator; and 0.1-10 wt% of other additives, wherein n is a number of 0-2; and R is H, CH3, CH2CH3 or -C(CH3)3.
Abstract:
A method for preparing a biodegradable porous polymer scaffold is provided to produce a biodegradable porous polymer scaffold for tissue engineering, which has no phenomena for pore clogging and harmful substances excretion and remain, and has an open structure with higher surface area and porosity. A method for preparing a biodegradable porous polymer scaffold for tissue engineering comprises the steps of: (a) adding a hydrogen peroxide-containing compound to a polymer solution which is obtained by dissolving a biodegradable polymer into a solvent, and mixing the resulting solution homogeneously; (b) allowing the solution obtained in the step (a) to stand at a temperature of -196 deg.C to a normal temperature so as to evaporate the solvent; and (c) introducing the polymer specimen obtained in the step (b) into an aqueous solution containing a catalyst for decomposition of hydrogen peroxide and foaming the resultant, followed by drying.
Abstract:
본 발명은 치과용 접착제 조성물에 관한 것으로, 생체와 조성물의 내수성, 강도, 접착, 색조 및 저장 안정성에 영향을 미치는 일정 온도 범위 및 습윤 범위 내에서 경화성이 우수한 치과용 접착성 조성물에 관한 것이다. 구체적으로 복합레진과 치아와의 접착성을 향상시키는 기존의 제품인 2,2-비스(4-(2-히드록시-3-메타크릴로일옥시프로폭시)페닐)프로판(Bis-GMA)에, 이 Bis-GMA 분자 중의 히드록시기 (-OH)의 수소원자를 메타크릴레이트기로 치환한 멀티메타크릴레이트기 함유 다관능성 프리폴리머를 혼합한 프리폴리머 혼합물을 기재로 하고, 접착 단량체, 친수성 단량체, 광개시제 및 환원제, 희석용매를 함유하는 것을 특징으로 하며, 본 발명의 조성물은 Bis-GMA를 포함하는 종래의 것보다 법랑질 및 상아질에 접착효과가 좋을 뿐만 아니라 우수한 물리적 특성을 보이고 시술을 간편하게 하는 효과를 나타낸다. 치과용 접착제, 다관능성 프리폴리머 혼합물, 접착 단량체, 친수성 단량체, 광경화성, 법랑질 접착, 상아질 접착
Abstract:
본 발명은 1단계 시술을 위한 치과용 고기능성 접착제 조성물에 관한 것으로, 본 발명에 따른 조성물은 2,2-비스[4-(2-히드록시-3-메타크릴로일옥시프로폭시)페닐]프로판 (이하, "Bis-GMA"라 칭함)에, 이 Bis-GMA 분자 중의 히드록시기의 수소 원자를 메타크릴레이트기로 치환한 멀티메타크릴레이트기 함유 다관능성 프리폴리머를 혼합한 프리폴리머 혼합물을 기재로 하고, 산성 단량체, 접착 단량체, 친수성 단량체, 희석 용매, 물, 무기 충전재, 광개시제 시스템을 포함하는 1단계 광중합형 치과용 고기능성 접착제 조성물에 관한 것이다. 본 발명의 조성물은 산부식제 처리 없이도 접착효과가 좋을 뿐만 아니라 치아와의 접착성이 뛰어나고 지각과민 현상 억제와 항우식성 등의 뛰어난 물성을 나타내고 생체 친화성도 우수한 효과를 나타낸다.
Abstract:
PURPOSE: A photopolymerizable composite resin composition for dental restoration using a multifunctional prepolymer mixture as a base material is provided, which has increased biocompatibility as well as exhibiting better physical and mechanical properties as compared to conventional compositions based on only Bis-GMA itself. CONSTITUTION: This composite resin composition comprises 2 to 40% by weight of multifunctional prepolymer mixture of 2,2-bis-(4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl)propane ("Bis-GMA") of formula 1 and tri-GMA of formula 2 in a ratio of 95:5 to 5:95, 1 to 20% by weight of a diluent, 40 to 95% by weight of an inorganic filler, a photoinitiation system, and other additives. The composition has almost no cytotoxicity and high strength and hardness.
Abstract:
PURPOSE: The pyridyl benzoxazole derivatives, their copolymers, and a fluorescence image making method are provided, thereby the pyridyl benzoxazole copolymers have good sensor properties in solution, film and particle status, so that they can be used as recording materials or sensor materials. CONSTITUTION: The pyridyl benzoxazole derivative is represented by formula (1), in which A and B are independently CH and N; R1 is alkyl or phenyl; R2 is O or NH, R3 is vinyl, acryl, allyl, alpha-methylvinyl or 4-vinylphenyl; m is an integer from 0 to 20. The pyridyl benzoxazole copolymer represented by formula (2) is produced by radical polymerization of comonomer selected from the group consisting of pyridyl benzoxazole derivatives, styrene, maleimide and methacrylate, in which A and B are independently CH and N; R1 is alkyl or phenyl; R2 is O or NH, m is an integer from 0 to 20; R4 is hydrogen or methyl; R5 is methyloxycarbonyl or phenyl; and x and y are integer from 10 to 5000. The fluorescence image making method comprises the steps of: dissolving pyridyl benzoxazole copolymer of formula (2) wherein A is CH and B is N, AIBN, organic acid or inorganic acid in an organic solvent; coating the solution on board and drying to form a thin layer; prebaking the thin layer; and exposing the thin layer to light using photomask and post-exposure baking it.
Abstract:
PURPOSE: Provided are hydroxy protected 1,4-dihydroxyanthraquinone derivatives used as a precursor of material for forming fine fluorescent image, copolymers thereof applied to material for recording and a sensor, and a process for forming the fine fluorescent image by using the copolymers. CONSTITUTION: The hydroxy protected 1,4-dihydroxyanthraquinone derivatives are represented by the formula (1), and the copolymers thereof represented by the formula (2) are produced by radical polymerizing the hydroxy protected 1,4-dihydroxyanthraquinone derivatives and comonomers selected from the group consisting of styrene, maleimide, and methacrylate in the presence of a polymerization initiator. And the process for forming the fine fluorescent image comprises the steps of: dissolving the copolymers containing the hydroxy protected 1,4-dihydroxyanthraquinone and a photoacid generator in an organic solvent; spreading the solution on a substrate and drying to from a thin film; prebaking the thin film coated substrate; treating under the condition of chemical amplification to remove the hydroxy protecting group from the copolymers. In the formula, R1 is hydroxy protecting group, one of A and B is H, R2 is O or NH, R3 is vinyl, alpha-methyl vinyl, or 4-biphenyl, one of C and D is H and the other is represented by the formula (c) or (d), R4 is hydrogen or methyl, R5 is methyloxycarbonyl or phenyl, m is an integer of 0-20, x and y are independently an integer of 10-5000.
Abstract:
PURPOSE: High-reactivity butadiene derivatives which self-polymerize instant and method for producing the same are provided which can manufacture a polymer simply without any initiator, catalyst and polymerization apparatus. CONSTITUTION: High-reactivity butadiene derivatives which self-polymerize instant, a butadiene monomer of formula(1), a butadiene polymer of formula(2) and a butadiene copolymer of formula(3), and method for producing the same are described. In formula, R1, R2, R4 are same or different cyan, carboxylate(2-8C carboxylate in the formula(1), 1-8C carboxylate in the formula(2) and (3)), sulfon, formal acetyl, benzoyl, phosphonyl, amide, or phenyl, R3 is H, or methyl, 1-8C carboxylate, sulfon, formal, acetyl, benzoyl, phosphonyl, amide, or phenyl. The compound can be used for various functional polymer fields such as a new process, a new polymer product, a coating agent, a carbon fiber precursor, an instant adhesive or the like.
Abstract:
본 발명에는 하기 화학식 1로 표시되는 지환족 유도체 및 그의 제조 방법이 개시되어 있다.
-(M a ) x -(M b ) y -(M c ) u -(M d ) v -
식 중, M a 는 카르복시 또는 히드록시기를 함유한 노르보르넨 단량체로서 이고, M b 는 카르복시 또는 히드록시기를 함유한 디노르보르넨 단량체로서 이며, M c 는 전자 결핍성 단량체로서 이고, M d 는 (메트)아크릴산 에스테르 단량체로서 이며, R 1 및 R 2 는 서로 독립적으로 H 또는 산소 원자수 1 내지 4개를 갖는 이탈기, 예를 들면 H, COOH, CH 2 OH, COOC 2 H 5 , COOC(CH 3 ) 3 , 메틸 에스테르, 테트라히드로피라닐 에스테르, 테트라히드로푸라닐 에스테르, 1-에톡시에틸 에스테르 또는 t-부틸 카르보네이트이며, R 3 은 O, NH 또는 N-CH 2 CH 3 이고, R 4 는 H 또는 CH 3 이고, R 5 는 CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 2 CH 3 또는 C(CH 3 ) 3 이며, x+y+u+v의 총 몰수를 기준으로, x는 0 내지 0.2, 바람직하게는 0.01 내지 0.1의 몰비를 갖는 값이고, y는 0.25 내지 0.5의 몰비를 갖는 값이며, u는 x+y이고, v는 0.1 내지 0.33의 몰비를 갖는 값이다. 이러한 지환족 유도체는 ArF 엑시머 레이저 영역에서의 투명성, 고해상도 및 고감도를 갖고, 기존의 노볼락 수지와 대등한 건식 엣칭 내성을 가지며, 기존의 알칼리 현상액을 적용할 수 있고, 특히 웨이퍼에 대한 접착성 및 현상성이 개선된다. 그러므로, 이러한 지환족 유도체를 사용하여 ArF 엑시머 레이저 가공용 고해상도 레지스트 재료를 제조할 수 있다.