Abstract:
A method and apparatus for an electronic substrate (1920) having a plurality of semiconductor devices is described. A thin film of nanowires (1910) is formed on a substrate. The thin film of nanowires (1910) is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions is defined in the thin film of nanowires. Contacts (1902) are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
Abstract:
This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates, as well as methods and uses for such substrates.
Abstract:
Methods of positioning and orienting nanostructures, and particularly nanowires, on surfaces for subsequent use or integration. The methods utilize mask based processes alone or in combination with flow based alignment of the nanostructures to provide oriented and positioned nanostructures on surfaces. Also provided are populations of positioned and/or oriented nanostructures, devices that include populations of positioned and/or oriented nanostructures, systems for positioning and/or orienting nanostructures, and related devices, systems and methods.