Abstract:
PROBLEM TO BE SOLVED: To provide a method and apparatus for obtaining an electronic substrate including a plurality of semiconductor devices. SOLUTION: A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed in the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-type doping nanowires and n-type doping nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for arranging nanowires on substrates, nanowire spraying techniques for forming nanowires as a film, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface levels in nanowires are described. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
Methods of detecting a component of interest, a change in charge, a pH, a cellular response using nanosensors are provided. Nanosensors, including nanowires and nanowire arrays comprising functionalized and/or non-functionalized nanowires are provided. Nanosensors are used for detection in cellular fragmentation, multiple concentration analysis, glucose detection, and intracellular analysis.
Abstract:
Nanostructure manufacturing methods and methods for assembling nanostructures into functional elements such as junctions, arrays and devices are provided. Systems for practicing the methods are also provided.
Abstract:
The present invention is directed to compositions of matter, systems, and methods to manufacture nanowires. In an embodiment, a buffer layer is placed on a nanowire growth substrate and catalytic nanoparticles are added to form a catalytic-coated nanowire growth substrate. Methods to develop and use this catalytic-coated nanowire growth substrate are disclosed. In a further aspec t of the invention, in an embodiment a nanowire growth system using a foil roller to manufacture nanowires is provided.
Abstract:
The present invention is directed to compositions of matter, systems, and methods to manufacture nanowires. In an embodiment, a method to produce a catalytic-coated nanowire growth substrate for nanowire growth is disclosed which comprises: (a) depositing a buffer layer on a substrate; (b) treating the buffer layer with boiled water or steam to enhance interactions between the buffer layer and catalyst particles; and (c) depositing catalytic particles on a surface of the buffer layer. Methods to develop and use this catalytic-coated nanowire growth substrate are disclosed.
Abstract:
The invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates, as well as methods and uses for such substrates.
Abstract:
A method and apparatus for an electronic substrate (1920) having a plurality of semiconductor devices is described. A thin film of nanowires (1910) is formed on a substrate. The thin film of nanowires (1910) is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions is defined in the thin film of nanowires. Contacts (1902) are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.