Abstract:
Handling of listen before talk (LBT) failures during radio resource control (RRC) procedures is disclosed. A user equipment (UE) may be configured to monitor for consistent uplink and downlink LBT failures on a bandwidth part (BWP) configured for a target cell. When the UE determines that consistent LBT failures are occurring with respect to the BWP, the UE may determine an LBT failure state on the BWP. In response, the UE may execute a recovery procedure, which may include selecting a new BWP associated with the target cell and having configured uplink resources, performing a cell reselection procedure, or switching to idle in order to perform cell selection. The UE may then report the LBT failures according to cell identification and BWP.
Abstract:
In an aspect, a UE receives, from a network entity, a configuration of PRS or SRSP resources for a positioning session, receives a configuration of at least one BWP from a serving BS, identifies a time-domain period for the positioning session where a set of parameters associated with the at least one BWP is to remain constant to achieve a first positioning accuracy requirement. The UE either performs positioning measurements on one or more of the PRS resources during the positioning session or transmits on one or more of the SRS-P resources during the positioning session. The UE determines an active BWP transition during the time-domain period from a first BWP to a second BWP that is associated with one or more changes to the set of parameters.
Abstract:
Disclosed are techniques related to wireless communications. In an aspect, a network entity determines whether a source reference signal transmitted from a first transmission-reception point (TRP) is a quasi-collocation (QCL) source of a target reference signal transmitted from a second TRP based, at least in part, on a first bandwidth (BW) portion occupied by the source reference signal and a second BW portion occupied by the target reference signal, the first BW portion having a first start frequency and a first BW size and the second BW portion having a second start frequency and a second BW size, and configures a user equipment (UE) with the source reference signal as the QCL source of the target reference signal when it is so determined.
Abstract:
In an aspect, the present disclosure includes a method, apparatus, and computer readable medium for wireless communications for determining, by a user equipment (UE), an evaluation time period based on a number of a plurality of reference signals that are quasi-co-located (QCL) within one or more measurement windows; measuring, by the UE, a signal quality value of one or more of reference signals within the evaluation time period; and determining, by the UE, whether the signal quality value of one or more of reference signals within the evaluation time period crosses an evaluation threshold.
Abstract:
Methods, systems, and devices for wireless communications and capability signaling for enhanced handover processes are described. A user equipment (UE) may transmit, to a source base station, a band combination indicator to indicate at least one band combination supported by the UE. The source base station may transmit a source base station configuration and at least one band combination supported by the UE to a target base station for use during a handover procedure. The target base station may then transmit to the source base station, a target base station configuration to use in the handover procedure. The source base station may transmit to the UE, both base station configurations to be applied during the handover procedure which may include a number of band combinations. The UE may communicate during handover execution with both base stations using at least one band combination indicated in the received base station configurations.
Abstract:
A method, a computer-readable medium, and an apparatus are provided for wireless communication at a User Equipment (UE). The UE receives a second random access message from the base station after transmitting a first random access message. The second random access message comprises a random access response (RAR) that indicates a narrowband to be used for receiving a fourth random access message. The apparatus determines whether to perform a measurement of the narrowband for the fourth random access message based on an amount of time between receiving the second random access message and transmitting a third random access message. The base station may determine whether the report comprises a measurement of the first narrowband or the second narrowband based on an amount of time between the second random access message and the third random access message or based on an indication in the third random access message.
Abstract:
Methods, apparatuses, and devices for processing Positioning Reference Signals (PRS) bursts are presented. In one example, a mobile device may acquire a first PRS burst transmitted from a base station through first transmitter antenna port and acquire a second PRS burst transmitted from a base station through a second antenna port. The mobile device may select between the first and second acquired PRS bursts for use in positioning operations such as observed time difference of arrival.
Abstract:
A method for blindly determining positioning reference signals in a wireless communication network determines a positioning reference signal (PRS) network configuration by estimating a PRS energy from predetermined locations of each subframe of an incoming signal. Such a method may also include blindly detecting PRS parameters based on the estimated PRS energy. The PRS energy may be peak energy responses for deep searches or verifications. The PRS energy may be a signal to signal plus noise ratio for shallow searches.
Abstract:
A method of providing Observed Time Difference of Arrival (OTDOA) assistance information to a mobile station is disclosed. In some embodiments, the OTDOA assistance information may comprise Positioning Reference Signal (PRS) assistance information including antenna switching assistance information for at least one cell. In one embodiment, the method may be implemented on a location server for the cell.
Abstract:
A receiver may train its equalizer using consecutive pilot bursts, divide the traffic between the consecutive pilot bursts into multiple sub-segments, and interpolate the trained equalizer coefficients to obtain the coefficients for equalizing one or more of the sub-segments. The receiver may also determine signal to interference and noise ratio (SINR) values based on each of the consecutive pilot bursts, and interpolate the SINR for decoding one or more of the sub-segments. The receiver may be an access terminal receiver operating in a code division multiple access (CDMA) cellular system.