Abstract:
A wireless-controlled airplane includes a flying unit and an on-ground controller which is connected to the flying unit through a communication section and flies the flying unit. The flying unit includes a body, a drive section installed on the body, a propulsion apparatus which generates a propulsive force when driven by the drive section, a main wing including a plurality of wing elements which are installed so as to be able to move with respect to each other, an opening and closing mechanism which changes the relative positions of the wing elements to change the effective area of the main wing, and a dropping apparatus which selectively holds and drops a load. By changing the effective area of the main wing, the flight speed can be changed, so the capacity and size of the drive section for rotating the propulsion apparatus can be decreased.
Abstract:
An inflatable structure constructed of flexible material that can occupy a minimal volume when in a deflated and stored condition as compared to its fully inflated and deployed configuration, has sufficient structural rigidity to function as a wing when deployed. The wing includes an array of inflatable chambers with generally circular cross-sections. The chambers are spaced a particular distance between their centers and held in that spacing by an outer wing skin. For equal cross-sectional diameter chambers this distance is less than the diameter. When the chambers are inflated the close spacing causes tension in the opposing surfaces to create a rigid structure.
Abstract:
This invention relates to a small-sized radio controlled flying device propelled by a thermal engine (20) with pusher type airscrew (19) for remote sensing, said device enabling short take-off and landing and flying at maximum speed of 35 Km/h. The device comprises a pod and wings, the pod (1) being a rigid tricycle carriage dismountable by disengagement of substantially pyramidal jig with rear base (2) and front apex (7), lower plane (3), two lateral planes (4, 5) and an upper plane (6), the base being a welded one-piece element and comprising the engine, the airscrew, a tank and the radio control, the apex being a welded one-piece element, the lower plane and the two lateral planes comprising spars (11, 12) at least assembled at the base and at the apex, the lower plane comprising at its three end angles two rear wheels (8) and a front wheel (9), the front wheel being provided to protrude towards the front in the apex and the wheels being low pressure tires, the wings (13) being a caisson-type supple parachute, said wings being connected to the pod in an adjustable fashion by two front slings (17), two braking slings (18) acting on the two flaps/ailerons.
Abstract:
A deployable wing that is folded so as to fit into a carrier such as an airplane that is released and automatically with the aid of parachutes to deploy and fly a given distance without assistance other than steering to reach a given destination and a propeller driven by a gas powered engine is actuated to propel the wing an extended distance. A guard is disposed adjacent to the propeller to assure that the lines of the parachutes do not get tangled into the propeller blades.
Abstract:
A method wherein a propeller driven, hydrazine powered aircraft is remotely piloted through rarefied atmosphere of a selected planet, including the planet Earth, and employed as a communication platform for a telemetry system provided for relaying information relating to features characterizing the surface of the planet.
Abstract:
A method and apparatus for operating an airfoil system. A gas may be generated. The gas may be sent into an inflatable airfoil system comprising an inflatable air foil and a section. The inflatable airfoil may have an inner end and an outer end in which the inflatable airfoil may be comprised of a number of materials that substantially pass electromagnetic waves through the inflatable airfoil. The section may have a number of openings in which the inner end of the inflatable airfoil may be associated with the section. The section may be configured to be associated with a fuselage. The number of openings may be configured to provide communications with an interior of the inflatable airfoil. The section with the number of openings may be configured to reduce reflection of the electromagnetic waves encountering the section.
Abstract:
The present invention is a variable geometry lighter-than-air (LTA) aircraft that is adapted to morph its shape from a symmetric cross-section buoyant craft to an asymmetric lifting body and even to a symmetric zero lift configuration. The basic structure is a semi rigid airship with movable longerons. Movement of the longerons adjusts the camber of the upper and/or lower surfaces to achieve varying shapes of the lifting-body. This transformation changes both the lift and drag characteristics of the craft to alter the flight characteristics. The transformation may be accomplished while the craft is airborne and does not require any ground support equipment.
Abstract:
Methods and apparatus for an adaptable solar airframe are provided herein. In some embodiments, an adaptable solar airframe includes an expandable body having an aerodynamic cross-section that reduces parasitic air drag at any given thickness of the body, further being able to change its shape in flight in response to changes in the relative position of the sun; and a flexible solar PV system attached to the surface of the expandable body.
Abstract:
The invention relates to an automatic takeoff method for an aircraft with a flexible airfoil, comprising a carriage suspended by rigging lines from an airfoil. According to said method: —said carriage is provided with an autopilot controlling actuators that control said rigging lines; —said airfoil is provided with an airfoil attitude sensor, comprising a biaxial accelerometer and a biaxial rate gyro, capable of defining the position of an airfoil reference frame in relation to the ground, and means for communicating with said autopilot; —during takeoff, information is received from said airfoil attitude sensor and transmitted to said autopilot for the purpose of controlling said actuators. The invention also relates to an airfoil for the implementation of said method, comprising an airfoil attitude sensor with an inertial unit with a biaxial accelerometer and a biaxial rate gyro, and means for communicating with an autopilot. The invention further relates to an aircraft comprising such an airfoil.
Abstract:
Methods and apparatus for an adaptable solar airframe are provided herein. In some embodiments, an adaptable solar airframe includes an expandable body having an aerodynamic cross-section that reduces parasitic air drag at any given thickness of the body, further being able to change its shape in flight in response to changes in the relative position of the sun; and a flexible solar PV system attached to the surface of the expandable body.