Abstract:
A micrometer sized, single-stage, horizontal and vertical thermal actuator capable of repeatable and rapid movement of a micrometer-sized optical device off the surface of a substrate. The horizontal and vertical thermal actuator is constructed on a surface of a substrate. At least one hot arm has a first end anchored to the surface and a free end located above the surface. A cold arm has a first end anchored to the surface and a free end. The cold arm is located above and laterally offset from the hot arm relative to the surface. The cold arm is adapted to provide controlled bending near the first end thereof. A member mechanically and electrically couples the free ends of the hot and cold arms such that the actuator exhibits horizontal and vertical displacement when current is applied to at least the hot arm.
Abstract:
A thermal bend actuator ( 6 ) is provided with a group of upper arms ( 23, 25, 26 ) and a group of lower arms ( 27, 28 ) which are non planar, so increasing the stiffness of the arms. The arms ( 23, 25, 26,27,28 ) may be spaced transversely of each other and do not overly each other in plan view, so enabling all arms to be formed by depositing a single layer of arm forming material
Abstract:
A microelectromechanical (MEMS) device (10) is provided that includes a microelectronic substrate (50) and a thermally actuated microactuator (20). For example, the MEMS device (10) may be a valve. As such, the valve may include at least one valve plate (30) that is controllably brought into engagement with at least one valve opening (40) in the microelectronic substrate (50) by selective actuation of the microactuator (20). While the MEMS device (10) can include various microactuators (20), the microactuator advantageously includes a pair of spaced apart supports (22) disposed on the substrate (50) and at least one arched beam (24) extending therebetween. The microactuator (20) may further include metallization traces (70) on distal portions (23) of the arched beams (24) to constrain the thermally actuated regions of arched beams to medial portions thereof. The valve may also include a latch (680) for maintaining the valve plate (30) in a desired position without requiring continuous energy input to the microactuator (20).
Abstract:
The invention relates to the production of multilayer microcomponents comprising one or more layers, each consisting of a material M chosen from metals, metal alloys, glasses, ceramics and glass-ceramics. The method consists in depositing, on a substrate, one or more layers of an ink P and one or more layers of an ink M, each layer being deposited in a predetermined pattern, each ink layer being at least partially consolidated before deposition of the next layer, in completely consolidating the partially consolidated layers of ink M after their deposition, and in completely or partially removing the material of each of the layers of ink P. An ink P consists of a thermosetting resin containing a mineral filler or of a mixture comprising a mineral material and an organic binder. An ink M consists of a mineral material that is a precursor of the material M and an organic binder. The inks are deposited by casting or by extrusion.
Abstract:
A nano gripper, comprising a pair of arms (71, 71) opposed to each other, a pair of projected parts (72, 72) formed on the tip part opposed surfaces of the pair of arms (71, 71) with the tip parts of the arms opposed to each other, and pairs of silicon extendable and thermally expanding actuators (75, 76) allowing the tip parts of the pair of arms (71, 71) to be moved close to and apart from each other, wherein the tip parts of the projected parts (72) are formed in a curvature of 50 nano meter or less, and the projected parts (72) are formed of silicon crystals and have a triangular pyramid shape with an apex formed of surfaces (100, 001, and 111).
Abstract:
A micrometer sized, single-stage, horizontal and vertical thermal actuator capable of repeatable and rapid movement of a micrometer-sized optical device off the surface of a substrate. The horizontal and vertical thermal actuator is constructed on a surface of a substrate. At least one hot arm has a first end anchored to the surface and a free end located above the surface. A cold arm has a first end anchored to the surface and a free end. The cold arm is located above and laterally offset from the hot arm relative to the surface. The cold arm is adapted to provide controlled bending near the first end thereof. A member mechanically and electrically couples the free ends of the hot and cold arms such that the actuator exhibits horizontal and vertical displacement when current is applied to at least the hot arm.
Abstract:
A microactuator (10) providing an output force and displacement in response to an increase in thermal energy is disposed. The microactuator (10) may have a substantially straight expansion member (20, 22) with a first and a second end. The first end may be coupled to a base (12, 16) and a second end may be coupled to a shuttle (24). The expansion member is capable of elongating in a elongation direction. Elongation of the expansion member may urge the shuttle to translate in an output direction substantially different than the elongation direction. In certain embodiments, multiple expansion members are arrayed along one side of the shuttle to drive the shuttle against a surface. Alternatively, expansion members may be disposed on both sides of the shuttle to provide balanced output force. If desired, multiple microactuators may be linked together to multiply the output displacement and/or output force.
Abstract:
Ce dispositif de génération d'une seconde variation ΔΤ 2 de température à partir d'une première variation ΔΤ 1 de température d'utilisation, comporte: - une couche (30) en matériau élastocalorique dont la température interne est apte à varier de ΔΤ 2 en réponse à une variation donnée Δσ d'une contrainte mécanique appliquée sur cette couche en matériau élastocalorique, la variation donnée Δσ étant induite par la première variation ΔΤ 1 de température - un élément suspendu (24) en contact mécanique avec la couche en matériau élastocalorique de manière à appliquer sur cette couche une contrainte mécanique qui varie en réponse à la variation ΔΤ 1 de température d'utilisation, cet élément suspendu (24) étant agencé de manière à faire varier de Δσ la contrainte mécanique appliquée sur la couche en matériau élastocalorique en réponse à la variation ΔΤ 1 de température pour générer ainsi la seconde variation ΔΤ 2 de température.
Abstract:
The present invention provides a bi-directional microelectromechanical element, a microelectromechanical switch including the bi-directional element, and a method to reduce mechanical creep in the bi-directional element. In one embodiment, the bi-directional microelectromechanical element includes a cold beam having a free end and a first end connected to a cold beam anchor. The cold beam anchor is attached to a substrate. A first beam pair is coupled to the cold beam by a free end tether and is configured to elongate when heated thereby to a greater temperature than a temperature of the cold beam. A second beam pair is located on an opposing side of the cold beam from the first beam pair and is coupled to the first beam pair and the cold beam by the free end tether. The second beam pair is configured to elongate when heated thereby to the greater temperature.
Abstract:
L'invention concerne la préparation de microcomposants multicouches qui comprend une ou plusieurs couches, chacune constituée par un matériau M choisi parmi les métaux, les alliages métalliques, les verres, les céramiques et les vitrocéramiques. Le procédé consiste à déposer sur un substrat une ou plusieurs couches d'une encre P, et une ou plusieurs couches d'une encre M, chaque couche étant déposée selon un motif prédéterminé, chaque couche d'encre étant au moins partiellement consolidée avant dépôt de la couche suivante ; effectuer une consolidation totale des couches M partiellement consolidées après leur dépôt ; éliminer totalement ou partiellement le matériau de chacune des couches P. Une encre P est constituée par une résine thermodurcissable contenant une charge minérale ou par un mélange comprenant un matériau minéral et un liant organique. Une encre M est constituée par un matériau minéral précurseur du matériau M et un liant organique. Les encres sont déposées par coulage ou par extrusion.