Abstract:
The method of fabrication of a monolithic silicon membrane structure in which the membrane and its supporting framework are constructed from a single ultra thick body of silicon. The fabrication sequence includes the steps of providing a doped membrane layer on the silicon body, forming an apertured mask on the silicon body, and removal of an unwanted silicon region by mechanical grinding and chemical etching to provide a well opening in the silicon body terminating in the doped membrane.
Abstract:
The present invention generally relates to a MEMS device and a method of manufacture thereof. The RF electrode, and hence, the dielectric layer thereover, has a curved upper surface that substantially matches the contact area of the bottom surface of the movable plate. As such, the movable plate is able to have good contact with the dielectric layer and thus, good capacitance is achieved.
Abstract:
A method for thinning a wafer layer to a predetermined thickness comprises two phases of thinning. A first thinning phase and a second thinning phase, wherein the first thinning phase is a preparatory thinning phase and the second thinning phase is a final thinning phase, so performed that the structure comprising silicon meets as thinned the final thickness as predetermined. Such thinned layer in a wafer for instance, can be used in a sensor to be used in normal sized, micromechanical or even nano-sized devices for the device specific sensing applications in electro-mechanical devices.
Abstract:
Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (98) (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture (292, 294, 296, 298) that ensures precise heights of deposited materials relative to an initial surface of a substrate (82), relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine (408).
Abstract:
Electrochemical fabrication methods for forming single and multilayer mesoscale and microscale structures are disclosed which include the use of diamond machining (e.g. fly cutting or turning) to planarize layers. Some embodiments focus on systems of sacrificial and structural materials which are useful in Electrochemical fabrication and which can be diamond machined with minimal tool wear (e.g. Ni-P and Cu, Au and Cu, Cu and Sn, Au and Cu, Au and Sn, and Au and Sn-Pb), where the first material or materials are the structural materials and the second is the sacrificial material). Some embodiments focus on methods for reducing tool wear when using diamond machining to planarize structures being electrochemically fabricated using difficult-to-machine materials (e.g. by depositing difficult to machine material selectively and potentially with little excess plating thickness, and/or pre-machining depositions to within a small increment of desired surface level (e.g. using lapping or a rough cutting operation) and then using diamond fly cutting to complete the process, and/or forming structures or portions of structures from thin walled regions of hard-to-machine materials as opposed to wide solid regions of structural material.
Abstract:
A process for filling one or more etched holes defined in a frontside surface of a wafer substrate. The process includes the steps of: (i) depositing a layer of a thermoplastic first polymer onto the frontside surface and into each hole; (ii) reflowing the first polymer; (iii) exposing the wafer substrate to a controlled oxidative plasma; (iv) optionally repeating steps (i) to (iii); (v) depositing a layer of a photoimageable second polymer; (vi) selectively removing the second polymer from regions outside a periphery of the holes using exposure and development; and (vii) planarizing the frontside surface to provide holes filled with a plug comprising the first and second polymers, which are different than each other. Each plug has a respective upper surface coplanar with the frontside surface.
Abstract:
The present invention relates to a method of fabricating a microfluidic device including at least two substrates provided with a fluid channel, comprising the steps of: a) etching at least a channel and one or more fluid ports in a first and/or a second substrate; b) depositing a first layer on a surface of the second substrate; c) partially removing the first layer in accordance with a predefined geometry; d) depositing a second layer on top of the first layer and the substrate surface; e) planarizing the second layer so as to smooth the upper surface thereof; f) aligning the first and second substrate; g) bonding the first substrate on the planarized second layer of the second substrate.
Abstract:
A method for thinning a wafer layer to a predetermined thickness comprises two phases of thinning. A first thinning phase and a second thinning phase, wherein the first thinning phase is a preparatory thinning phase and the second thinning phase is a final thinning phase, so performed that the structure comprising silicon meets as thinned the final thickness as predetermined. Such thinned layer in a wafer for instance, can be used in a sensor to be used in normal sized, micromechanical or even nano-sized devices for the device specific sensing applications in electro-mechanical devices.