Abstract:
In a method for producing a diaphragm sensor unit having a semiconductor material substrate, a flat diaphragm and an insulating well for thermal insulation below the diaphragm are generated, for the formation of sensor element structures for at least one sensor. The substrate, made of semiconductor material, in a specified region, which defines sensor element structures, receives a deliberately different doping from the surrounding semiconductor material, that porous semiconductor material is generated from semiconductor material sections between the regions distinguished by doping, and semiconductor material in the well region under semiconductor is rendered porous and under parts of the sensor element structure is removed and/or rendered porous.
Abstract:
Methods and apparatus for subtractively fabricating three-dimensional structures relative to a surface of a substrate and for additively depositing metal and dopant atoms onto the surface and for diffusing them into the bulk. A chemical solution is applied to the surface of the semiconductor substrate, and a spatial pattern of electron-hole pairs is generated by projecting a spatial pattern of illumination characterized by a specified intensity, wavelength and duration at each pixel of a plurality of pixels on the surface. Charge carriers are driven away from the surface of the semiconductor on a timescale short compared to the carrier recombination lifetime. Such methods are applied to creating a spatially varying doping profile in the semiconductor substrate, a photonic integrated circuit and an integrated photonic microfluidic circuit.
Abstract:
A method for producing at least one cavity within a semiconductor substrate includes dry etching the semiconductor substrate from a surface of the semiconductor substrate at at least one intended cavity location in order to obtain at least one provisional cavity. The method includes depositing a protective material with regard to a subsequent wet-etching process at the surface of the semiconductor substrate and at cavity surfaces of the at least one provisional cavity. Furthermore, the method includes removing the protective material at least at a section of a bottom of the at least one provisional cavity in order to expose the semiconductor substrate. This is followed by electrochemically etching the semiconductor substrate at the exposed section of the bottom of the at least one provisional cavity. A method for producing a micromechanical sensor system in which this type of cavity formation is used and a corresponding MEMS are also disclosed.
Abstract:
A method for producing at least one cavity within a semiconductor substrate includes dry etching the semiconductor substrate from a surface of the semiconductor substrate at at least one intended cavity location in order to obtain at least one provisional cavity. The method includes depositing a protective material with regard to a subsequent wet-etching process at the surface of the semiconductor substrate and at cavity surfaces of the at least one provisional cavity. Furthermore, the method includes removing the protective material at least at a section of a bottom of the at least one provisional cavity in order to expose the semiconductor substrate. This is followed by electrochemically etching the semiconductor substrate at the exposed section of the bottom of the at least one provisional cavity. A method for producing a micromechanical sensor system in which this type of cavity formation is used and a corresponding MEMS are also disclosed.
Abstract:
A method for manufacturing a semiconductor component, such as, for example, a multilayer semiconductor component including a micromechanical component, such as, for example, a heat transfer sensor having a semiconductor substrate of silicon, and a sensor region. For inexpensive manufacture of a thermal insulation between the semiconductor substrate and the sensor region a porous layer is provided in the semiconductor component.
Abstract:
In a method for producing a diaphragm sensor unit having a semiconductor material substrate, a flat diaphragm and an insulating well for thermal insulation below the diaphragm are generated, for the formation of sensor element structures for at least one sensor. The substrate, made of semiconductor material, in a specified region, which defines sensor element structures, receives a deliberately different doping from the surrounding semiconductor material, that porous semiconductor material is generated from semiconductor material sections between the regions distinguished by doping, and semiconductor material in the well region under semiconductor is rendered porous and under parts of the sensor element structure is removed and/or rendered porous.
Abstract:
A novel porous film is disclosed comprising a network of silicon columns in a continuous void which may be fabricated using high density plasma deposition at low temperatures, i.e., less than about 250 null C. This silicon film is a two-dimensional nano-sized array of rodlike columns. This void-column morphology can be controlled with deposition conditions and the porosity can be varied up to 90%. The simultaneous use of low temperature deposition and etching in the plasma approach utilized, allows for the unique opportunity of obtaining columnar structure, a continuous void, and polycrystalline column composition at the same time. Unique devices may be fabricated using this porous continuous film by plasma deposition of this film on a glass, metal foil, insulator or plastic substrates.
Abstract:
Systems and methods for etching topographic features in non- crystalline or metallic substrates are provided. A protective material is placed and patterned on a surface of the substrate to define exposed and protected regions of the substrate for etching in a liquid etchant having etching rates that are thermally activated. A nonuniform temperature profile is imposed on the substrate so that the temperatures and hence the etching rates at surfaces in the exposed regions are higher than those in the protected regions. Arrangements for imposing the nonuniform temperature profile include heating designated portions of the substrate with light radiation. Alternatively, the non-uniform temperature profile is developed as etching progresses by passing current pulses through the substrate in a manner that causes geometrically non-uniform heating of the substrate.
Abstract:
Systems and methods for etching topographic features in non- crystalline or metallic substrates are provided. A protective material is placed and patterned on a surface of the substrate to define exposed and protected regions of the substrate for etching in a liquid etchant having etching rates that are thermally activated. A nonuniform temperature profile is imposed on the substrate so that the temperatures and hence the etching rates at surfaces in the exposed regions are higher than those in the protected regions. Arrangements for imposing the nonuniform temperature profile include heating designated portions of the substrate with light radiation. Alternatively, the non-uniform temperature profile is developed as etching progresses by passing current pulses through the substrate in a manner that causes geometrically non-uniform heating of the substrate.
Abstract:
The invention relates to a method for selective etching of SiC, the etching being carried out by applying a positive potential to a layer (3; 8) of p-type SiC being in contact with an etching solution containing fluorine ions and having an oxidising effect on SiC. The invention also relates to a method for producing a SiC micro structure having free hanging parts (i.e. diaphragm, cantilever or beam) on a SiC-substrate, a method for producing a MEMS device of SiC having a free hanging structure, and a method for producing a piezo-resistive pressure sensor comprising the step of applying a positive potential to a layer (8) of p-type SiC being in contact with an etching solution containing fluorine ions and having an oxidising effect on SiC.