Abstract:
Process for producing a sintered granular material containing silicon dioxide and having a BET surface area of less than 1 m 2 g and a proportion of impurities of less than 50 ppm, in which a mixture which contains silicon dioxide powder and a metal compound is intensively mixed in an atmosphere having a relative atmospheric humidity of from 1.0 to 100% at temperatures of from 0 to 50°C by means of a dispersing apparatus, the crumbly mass is divided into pieces, subsequently dried, purified 'and sintered. The moisture content of the silicon dioxide powder and/or the atmospheric humidity are/is at least sufficient to hydrolyse the metal compound completely.
Abstract:
Methods for selecting titania-doped quartz glass which experiences a reduction in OH group concentration of less than or equal to 100 ppm upon heat treatment at 900° C. for 100 hours as suitable material for the EUV lithography member.
Abstract:
Methods for selecting titania-doped quartz glass which experiences a reduction in OH group concentration of less than or equal to 100 ppm upon heat treatment at 900° C. for 100 hours as suitable material for the EUV lithography member.
Abstract:
The present invention provides an optical fiber providing high photosensitivity in the absence of hydrogen loading as well as a low numerical aperture. One aspect of the present invention relates to an optical fiber including a core, the core comprising silica doped with at least about 6 mol % germania and at least about 0.9 wt % fluorine; and a cladding surrounding the core. The optical fiber of the present invention is suitable for the production of fiber Bragg gratings.
Abstract:
The present invention is directed to isotopically enriched optical materials and methods of producing the same. The optical materials provide high isotopic purity silica, calcium, zinc, gallium and germanium materials with increased resistance to optical damage which can be used alone or in combination with other means of preventing damage to decrease lens degradation caused by energy-induced compaction during use.
Abstract:
Optical waveguides made of quartz glass with reduced infrared absorption and reduced attenuation coefficients are made of glass material composed of atoms having mass numbers higher than that of the natural isotope distribution. The quartz glass or doped quartz glass is made of silicon atoms, of which most or all have the mass numbers 29 and/or 30, as well as of oxygen atoms, of which most or all are composed of isotopes with the mass numbers 17 and/or 18. Atoms of the 76Ge isotope are preferably used for doping with germanium atoms having higher mass numbers than in the natural isotope mixture. Glass with atoms of preferably 30Si and/or 18O are preferably used for optical waveguides based on quartz glass having attenuation coefficients below 0.15 dB/km. As indicated, such optical waveguides are also suitable for transmitting high-energy, pulsed or continuous laser light in a wavelength range from 2.0 to 3.0 &mgr;m. These optical waveguides are also suitable for transmitting holmium laser light at 2.1 &mgr;m and Er laser light with a wavelength of 2.79 and 2.94 &mgr;m.
Abstract:
This invention relates to the production of high purity fused silica glass through oxidation and/or flame hydrolysis of a halide-free, organosilicon-R compound in vapor form having the following properties:(a) producing a gas stream of a halide-free silicon-containing compound in vapor form capable of being converted through thermal decomposition with oxidation or flame hydrolysis to SiO.sub.2 ;(b) passing said gas stream into the flame of a combustion burner to form amorphous particles of fused SiO.sub.2 ;(c) depositing said amorphous particles onto a support; and(d) either essentially simultaneously with said deposition or subsequently thereto consolidating said deposit of amorphous particles into a virtually nonporous body; the improvement comprising utilizing a halide-free, organosilicon-R compound in vapor form having the following properties:(1) a Si--R bond dissociation energy that is no higher than the dissociation energy of the Si--O bond;(2) a boiling point no higher than 350.degree. C.; and(3) which, upon pyrolysis and/or hydrolysis, will produce decomposition products beside SiO.sub.2 which are deemed to be environmentally safe or the emissions are below acceptable governmental standards.
Abstract:
This invention relates to the discovery of a method for incorporating various oxides into silica-containing porous and nonporous glass materials by dissolving soluble compounds of the additive oxides, characterized as MxOy, into solutions, colloidal solutions, or suspensions of soluble silicates, reacting the mixture with an organic compound, and then firing the thus-formed body at temperatures below the softening point of the particular glass composition for a sufficient length of time to produce the porous body or non-porous glass body containing the added oxides intimately bonded to the silica network.