Abstract:
An internal combustion engine (300) for a vehicle, such as a motorcycle (20), includes a crankcase (380), two banks of cylinders (320a, 320b) projecting from the crankcase (380) in a V-configuration, a plurality of pushrods (364), and a plurality of camshafts (360a, 360b, 360c) supported by the crankcase (380). The two banks of cylinders (320a, 320b) include a first cylinder bank that projects from the crankcase (380) to a first cylinder head (340a), and a second cylinder bank that projects from the crankcase (380) to a second cylinder head (340b). The plurality of pushrods (364) extend between the crankcase (380) and the first and second cylinder heads (340a, 340b), and the plurality of camshafts include only the first, second and third camshafts (360a, 360b, 360c).
Abstract:
Provided is a device used in the air induction tube of an internal combustion engine after the air filter and before the throttle body, and in particular to a device used to separate an air flow into a plurality of segments. The device can be made of two pieces. Each piece is initially a flat plate. A slit is formed half way through each plate and the corners are cut off or clipped. Each plate is then formed to have two generally curved portions. The pieces are joined via the slits resulting in the device. The pieces are generally perpendicular to each other at their intersection. The device is fitted into the air induction tube upstream of the throttle body, whereby it separates the air flow into distinct segments. The curved walls can be slightly compressed when inserted into an induction tube to hold the assembly in place.
Abstract:
An internal combustion engine for a vehicle, such as a motorcycle, includes a crankcase defining a sump, and a lubrication system scavenging oil from the crankcase and supplying oil to the crankshaft and to first and second cylinder heads. The lubrication system includes a pump with housing and rotor, the housing being fixed to the crankcase and the rotor being rotatable around a crankshaft axis and being rotated by the crankshaft. A plurality of oil supply passages extend through the crankcase, potentially including at least one being formed in the crankcase.
Abstract:
An internal combustion engine for a vehicle, such as a motorcycle, includes a crankcase defining a sump, and a lubrication system scavenging oil from the crankcase and supplying oil to the crankshaft and to first and second cylinder heads. The lubrication system includes a pump with housing and rotor, the housing being fixed to the crankcase and the rotor being rotatable around a crankshaft axis and being rotated by the crankshaft. A plurality of oil supply passages extend through the crankcase, potentially including at least one being formed in the crankcase.
Abstract:
An internal combustion engine for a vehicle, such as a motorcycle, includes a crankcase, two banks of cylinders projecting from the crankcase in a 56-57 degree V-configuration, a plurality of pushrods, and a plurality of camshafts supported by the crankcase. The two banks of cylinders include a first cylinder bank that projects from the crankcase to a first cylinder head, and a second cylinder bank that projects from the crankcase to a second cylinder head. The plurality of intake and exhaust valve pushrods extend between the crankcase and the first and second cylinder heads, driven by one intake camshaft and two exhaust camshafts.
Abstract:
An intake manifold for an internal combustion engine including a manifold base portion and a manifold cover portion. The manifold cover portion and base portion are each formed from a thermoplastic composite material. The base portion includes several runners which may be coupled to respective intake ports of an internal combustion head. The manifold base portion and the manifold cover portion may be selected from a group of differing parts to provide a manifold having desired application or performance characteristics.
Abstract:
A flexible hose is disclosed, e.g., a charge-air hose for the automobile industry. A charge-air hose has rigid and flexible sections, which can be manufactured at lower costs and is less prone to material failure during permanent use than is a conventional hose. An exemplary flexible hose comprises at least one crosslinkable material, wherein the hose has crosslinking degrees differing in portions.
Abstract:
There is provided a supercharger system for supercharging a vehicle engine includes a first lower intake manifold adapter attached to the vehicle engine. The supercharger system further includes a second lower intake manifold adapter attached to the vehicle engine. The first and second lower intake manifold adapters can be attached to respective first and second cylinder heads of the vehicle engine. The supercharger system further includes a plate situated between the first and the second lower intake manifold adapter, where the plate is adapted to receive a supercharger on a bottom surface of the plate. The supercharger provides compressed air that flows through the first and the second lower intake manifold adapter to the vehicle engine. The supercharger system further includes an upper manifold plenum chamber situated over the plate, where the upper manifold plenum chamber receives the compressed air from the supercharger.
Abstract:
A hydrocarbon trapping device including an adsorbing element of a material configured to adsorb hydrocarbons from the air and a support connected to the adsorbing element is provided. The adsorbing element includes first and second opposing ends, and the support includes an embedded portion located within the adsorbing element between the first and second ends to reinforce the adsorbing element.